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Suppose K is the intersection of a finite number of closed half-spaces [Ki] in a
Hilbert space X, and x # X"K. Dykstra's cyclic projections algorithm is a known
method to determine an approximate solution of the best approximation of x from K,
which is denoted by PK(x). Dykstra's algorithm reduces the problem to an iterative
scheme which involves computing the best approximation from the individual Ki . It is
known that the sequence [xj] generated by Dykstra's method converges to the best
approximation PK (x). But since it is difficult to find the definite value of an upper
bound of the error &xj&PK(x)&, the applicability of the algorithm is restrictive. This
paper introduces a new method, called the successive approximate algorithm, by
which one can generate a finite sequence x0 , x1 , ..., xk with xk=PK (x). In addition,
the error &xj&PK (x)& is monotone decreasing and has a definite upper bound
easily to be determined. So the new algorithm is very applicable in practice. � 1998

Academic Press

1. INTRODUCTION

Suppose K=�r
i=1 Ci is the nonempty intersection of a finite number of

closed convex sets C1 , ..., Cr in a Hilbert space X, and x # X"K. Dykstra's
cyclic projections algorithm is a known method to determine an approximate
solution of the best approximation of x from K, Pk(x). Dykstra's algorithm
essentially reduces the problem to an iterative scheme which involves comput-
ing the best approximation from the individual C1 , ..., Cr . According to
Dykstra [1] and Boyle and Dykstra [2], the sequence [xj] generated by
Dykstra's method, which is generally an infinite sequence except in some
special cases, converges to PK (x). Then the efficacy of the method depends
on the rate of convergence and one's ability of estimating the upper bound
of &xj&PK (x)&.

In some simple cases, e.g., when all the Ci are subspaces, linear varieties
(i.e., translates of subspaces), or half-spaces, one can determine by Dykstra's
algorithm a sequence [xj] converging to PK (x) since it is easy to find the
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best approximation from each Ci . In fact, when all the Ci are subspaces,
Dykstra's algorithm reduces to the method of alternating projections due to
Halperin [3]. Error analyses were made by Smith, Solmon, and Wagner [4]
and Kayalar and Weinert [5]. Furthermore, it can be shown that those
error bounds remain valid if the subspaces are replaced by linear varieties.
When all the Ci are half-spaces, i.e., K is a polyhedron in the Hilbert space X,
certain ``residual'' vectors must be computed at each step of projection (but
no such ``residual'' vectors appeared in the subspace case). Due to Deutsch
and Hundal [6], the sequence [xj] generated by Dykstra's algorithm has
an error bound of exponential type as

&xj&PK (x)&�\c j,

where \>0, 0�c<1. Though [6] gave an upper bound less than 1 for the
constant c, no estimation for \ was given. So the applicability of Dykstra's
algorithm for polyhedron approximation is restrictive unless we can find an
active estimation for \.

Motivated by the fact that polyhedron approximation has many important
applications (see, e.g., [6, Sect. 5]) this paper introduces a new method which
we call the successive approximate algorithm. According to this algorithm,
starting from an arbitrary point x0 # K one can generate a finite sequence
x0 , x1 , ..., xk with xk=PK (x). Moreover, xj ( j<k) can be considered to be
an approximate solution of PK(x) because the error &xj&PK (x)& is monotone
decreasing and has a definite upper bound easily to be determined. So the new
method is very applicable in practice.

We conclude this introduction by mentioning that usually it is not
difficult to find a point x0 in K for a given practical problem. Otherwise,
one can get an x0 # K by known successive projection methods (see, e.g., [7]).

2. MAIN RESULTS

Let X be a Hilbert space. For i=1, ..., r (r�2 is a given integer), let
ci # R and fi # X with & fi &=1. Write

Hi :=[x # X | (x, fi) =ci],

Ki :=[x # X | (x, fi) �ci],

K := ,
r

i=1

Ki .

Assume Hi {Hj , if i{ j, and K is nonempty. Since K is a closed convex set,
for any given x # X there always exists a unique best approximation PK (x)
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of x from K. By a translation if necessary we may assume that x equals the
origin O. We assume O � K unless otherwise stated.

Suppose the dimension of the subspace Xn :=span[ fi]r
i=1 is n. Clearly,

if x # K and the projection of x on Xn is x$, then x$ # K because (x$, fi) =
(x$&x, fi)+(x, fi)�0+ci , i # [1, ..., r]. For x, y # X, by [xy] we denote
the set [(1&*) x+*y | * # [0, 1]].

For any subset I/[1, ..., r], denote the number of the elements of I by
|I | and write

H(I ) :=,
i # I

Hi ,

K(I ) :=,
i # I

Ki ,

PI :=PH(I )(O).

For x # X, let

I(x) :=[i # [1, ..., r] | (x, fi)=ci].

Based on Lemma 2 in the next section, PI can be written as a linear
combination of [ fi]i # I if the [ fi]i # I are linearly independent. So we can
define

T(x)={I/I(x) | O<|I |<n, [ fi]i # I are linearly independent,

and PI {O can be written as :
i # I

:i fi with :i�0, i # I= .

Definition. Assume k�1, x0 , ..., xk # K. If

x1=PK & [x$0O](O),

where x$0 is the projection of x0 on Xn , and for j=1, ..., k&1 there exists
Ij # T(xj) such that

xj+1=PK & [xj PIj
](PIj

){xj , (2.1)

then we call x0 , ..., xk a successive approximate sequence to O in K,

Obviously, if x0 , ..., xk is a successive approximate sequence then x0 , ..., xj

is also, 1� j<k.

Theorem. For any point x0 # K, there exists a successive approximate
sequence x0 , x1 , ..., xk to O in K with x0 being its starting point, for which
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(i) xk=PK (O);

(ii) any successive approximate sequence x0 , x$1 , ..., x$k$ to O in K
satisfies k$�k and x$j=xj , j=1, ..., k$;

(iii) {&x1&�&x0&,
&xj+1&<&xj&, 1� j<k,

(2.2)

0<&xj+1&&&PK (O)&<&xj+1&&&PIj
&, 1� j<k&1, (2.3)

&xj+1&PK (O)&<&xj&PK (O)&, 1� j<k, (2.4)

and

&xj+1&PK (O)&<(&xj+1&2&&PIj
&2)1�2, 1� j<k&1; (2.5)

(iv) k�1+_\r
1++ } } } +\ r

n&1+&&_\r+

1 ++ } } } +\ r+

n&1+& ,

(2.6)

where r+ denotes the number of the elements of the set

I+ :=[i # [1, ..., r] | ci�0],

and ( r+
j ) is defined to be zero if j>r+ .

The successive approximate sequence x0 , ..., xk in the Theorem can be
generated by the following algorithm:

Algorithm for a Successive Approximate Sequence. Step 0. For the
given point x0 # K, compute its projection x$0 on Xn and the best approximation
of O from K & [x$0O].

Write

x1=PK & [x$0O](O), T1=T(x1), d1=0.

Let j � 1 and go to Step j.

Step j. For each I # Tj compute PI , if &PI&>dj then determine
PK & [xj PI ](PI).

Case j.1. If there exists an Ij # Tj for which

&PIj
&>dj ( j.1-1)

and

PK & [xj PIj
]=(PIj

) or {xj , ( j.1-2)
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then

Case j.1.1. if PK & [xj PIj
](PIj

)=PIj
=xj , let k= j and end;

Case j.1.2. if PK & [xj PIj
](PIj

)=PIj
{xj , let xj+1=PK & [xj PIj

](PIj
), k=

j+1 and end;

Case j.1.3. if PK & [xj PIj
](PIj

){PIj
), let xj+1=Pk & [xj PIj

](PIj
) and

Tj+1=[I � T1 _ } } } _ Tj | I # T(xj+1)],

dj+1=&PIj
&

and j � j+1. Go to Step j ;

Case j.2. If there is no Ij # Tj satisfying ( j.1-1) and ( j.1-2), let k= j and
end.

3. PROOF OF MAIN RESULTS

Firstly, we point out that by Theorem 2.4.2 of [8] one can compute the
projection of x0 on the finite dimensional subspace Xn , and by following
Lemma 1 and Lemma 2 one can complete the calculation of the above
Algorithm for a Successive Approximate Sequence.

Lemma 1. For any x # K and y # X,

PK & [xy]( y)=(1&*) x+*y, (3.1)

where *=1 if

I� :=[i # [1, ..., r] | ( y, fi)>ci]

is empty, otherwise

*=min {*i | *j=
ci&(x, fi)

( y, fi)&(x, fi)
, i # I� =

and * # [0, 1).

Proof. Obviously, (3.1) holds if I� =< and *=1. If I� {<, it is easy to
check

( (1&*i) x+*i y, fi)=ci , i # I� ,

and (3.1) holds clearly. K
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Lemma 2. If I=[i1 , ..., is]/[1, ..., r], and [ fij
]s

j=1 are linearly independent,
then

PI= :
s

j=1

:ij
fij

and

&PI&2= :
s

j=1

:
s

m=1

:ij
:im

( fij
, fim

), (3.2)

where

:ij
=

Gij
(i1 , ..., is , (ci1

, ..., cis
))

G(i1 , ..., is)
,

G(i1 , ..., is)= }
( fi1

, fi1
)

( fi2
, fi1

)
} } }

( fis
, fi1

)

( fi1
, fi2

)
( fi2

, fi2
)

( fis
, fi2

)

} } }
} } }

} } }

( fi1
, fis

)
( fi2

, fis
)

( fis
, fis

) } ,
Gij

(i1 , ..., is , (ci1
, ..., cis

))

= }
( fi1

, fi1
)

( fi2
, fi1

)

( fis
, fi1

)

} } }
} } }
} } }
} } }

( fi1
, fij&1

)
( fi2

, fij&1
)

( fis
, fij&1

)

ci1

ci2

cis

( fi1
, fij+1

)
( fi2

, fij+1
)

( fis
, fij+1

)

} } }
} } }

} } }

( fi1
, fis

)
( fi2

, fis
)

( fis
, fis

) } .
Proof. Let P=�s

j=1 :ij
fij

. By Cramer's rule we have

(P, fij
)=cij

, j=1, ..., s.

So P # H(I ).
For any x # H(I ), by (x, fij

) =cij
, j=1, ..., s, we have

(x&P, P) = :
s

j=1

:ij
(x&P, fij

) = :
s

j=1

:ij
((x, fij

) &(P, fij
) )=0,

and hence

&x&2=&x&P+P, x&P+P&2=&x&P&2+2(x&P, P)+&P&2�&P&2,

which implies P=PI . Equation (3.2) holds obviously. K

To prove our Theorem, we need the following lemmas. Especially,
Lemma 3 does not need the hypothesis of O � K.
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Lemma 3. x* # K is the best approximation PK (O) if and only if there
exists :i�0, i # I(x*) for which

x*= :
i # I(x*)

:i fi .

Proof. For any set S/X, we write the closure of S as S� , and

S% :=[x # X | (x, y)�0, \y # S],

cc(S) :={x | x= :
m

i=1

*i yi , yi # S, *i�0, m # N= .

Then Proposition (6.9.2) in [8] shows

s%%=cc(S). (3.3)

It is well known that x*=PK (O) iff

&x* # (K&x*)%.

So it is sufficient to prove

(K&x*)%=cc[ fi | i # I(x*)]. (3.4)

In fact, (a) if f =�i # I(x*) *i fi , *i�0, then for any x # K&x* from
(x*+x, fi)�ci and (x*, fi)=ci , i # I(x*) we have

( f, x)= :
i # I(x*)

*i( fi , x)=0.

So f # (K&x*)% and

cc[ fi | i # I(x*)]/(K&x*)%. (3.5)

(b) On the contrary, assume f # (K&x*)%. Suppose x is an arbitrary
point of �i # I(x*) (Ki&x*). Then for i # I(x*), by x # Ki&x* and the
definition of I(x*) it follows that

(x, fi)=(x+x*, fi) &(x*, fi)�ci&ci=0.

Thus

(x*+=x, fi) �ci , i # I(x*), =>0. (3.6)
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Since (x*, fi) <ci for any i � I(x*), there exists an =>0 such that

(x*+=x, fi)�ci , i � I(x*).

Combined with (3.6) we see that

=x # K&x*.

So we have

(x, f ) =
1
=

(=x, f ) �0.

That is,

f # _ ,
j # I(x*)

(Ki&x*)&%
. (3.7)

Note that y # [cc[ fi | i # I(x*)]]% implies ( y, fi) �0, i # I(x*) and hence
y # �i # I(x*) (Ki&x*). We have

[cc[ fi | i # I(x*)]]%/ ,
i # I(x*)

(Ki&x*).

Noting (3.7), (3.3), and the fact that I(x*) is a finite set we conclude that

f # _ ,
i # I(x*)

(Ki&x*)&%
/[cc[ fi | i # I(x*)]]%%

=cc[ fi | i # I(x*)]=cc[ fi | i # I(x*)].

Combined with (3.5) we get (3.4). K

Lemma 4. If x # K and I # T(x), then

K/KI , H(I )/HI , (3.8)

and

PKI
(O)=PI , (3.9)

where

KI={y # X } �y, &
PI

&PI&��&&PI&= ,

HI={y # X } �y, &
PI

&PI&�=&&PI&= .

422 SHUSHENG XU



File: DISTL2 317409 . By:CV . Date:28:04:98 . Time:13:19 LOP8M. V8.B. Page 01:01
Codes: 2303 Signs: 1055 . Length: 45 pic 0 pts, 190 mm

Proof. Based on the definition of T(x) we have

PI= :
i # I

:i fi {0, :i�0.

So for any y # K, the fact that PI # H(I ) gives

�y, &
PI

&PI&�= :
i # I

&:i

&PI&
( y, fi) �&

1
&PI&

:
i # I

:ici

=&
1

&PI&
:
i # I

:i( fi , PI) =&&PI&,

which implies K/KI . Proof of H(I )/HI is similar.
For any y # KI , the definition of KI implies ( y, &PI) �&(PI , PI)

which is ( y&PI , PI) �0. Thus

&y&2=&y&PI&2+2( y&PI , PI)+&PI&2�&PI&2.

So from PI # HI we have (3.9). K

Lemma 5. If x*=PK (O), then there exists an nonempty I*/I(x*) such
that [ fi]i # I(x*) are linearly independent and

x*= :
i # I*

:i fi with :i�0, i # I*, (3.10)

moreover

x*=PI*. (3.11)

Proof. Based on Lemma 3, there exists at least one nonempty subset
I/I(x*) such that x* can be written as a linear combination of [ fi]i # I

with negative coefficients. If there exist more than one such subsets, take
one that has least elements and denote it as I$. Then

x*= :
i # I$

:i fi , with :i<0, i # I$.

It is not difficult to show that the [ fi]i # I$ are linearly independent. In
fact, if there exists a set [ai]i # I$ /R that at least one of the elements does
not equal zero and

:
i # I$

ai fi=0,
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then

x*= :
i # I$

(:i&:ai) fi (3.12)

for any : # R. Let :=:i0
�ai0

with i0 # I$ satisfy

}
:i0

ai0
}=min

i # I$ }
:i

ai } .

Then

|:ai |� } :i

ai } } |ai |= |:i | , i # I$.

So on the right hand side of (3.12) the coefficient of fi is zero if i=i0 and
not larger than zero if i{i0 , which contradicts the definition of I$.

Now take a subset I*/I(x*) such that I$/I* and [ fi]i # I* is a maximal
linearly independent subset of [ fi]i # I(x*) . Then (3.10) holds.

Suppose on the contrary that x*{PI*. Then by x* # H(I*) we have

&PI*&<&x*&. (3.13)

It is easy to show that for i # I(x*)

(PI* , fi) =ci=(x*, fi). (3.14)

Actually, (3.14) holds for i # I* obviously. For i # I(x*)"I*, writing

fi= :
j # I*

aj fj

we have

(PI* , fi)= :
j # I*

aj(PI* , fj) = :
j # I*

ajcj

= :
j # I*

aj(x*, fj) =(x*, fi) =ci .

So (3.14) holds for any i # I(x*). Since

(x*, fi)<ci , i � I(x*),

there exists a *>0 for which

x* :=(1&*) x*+*PI* # Ki , i=1, ..., r.
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But by (3.13)

&x*&<&x*&

which contradicts the hypothesis of x*=PK (O). K

Lemma 6. If x # K & Xn , O � K(I(x)), and

PK & [xPI]
(PI)=x

for any I # T(x), then

x=PK (O).

Proof. Assume the best approximation of O from K(I(x)) is x*, then
x*{0. Using Lemma 5 to the polyhedron K(I(x)) we can get a nonempty
subset

I*/I(x*) & I(x) (3.15)

for which the [ fi]i # I* are linearly independent and (3.10) and (3.11) hold.
If |I*|<n, then I* # T(x) and by the hypothesis

PK & [xPI*](PI*)=PK & [xx*](x*)=x.

Hence from Lemma 1 we can find a * # [0, 1] for which

(1&*) x+*x*=x.

Provided *=0, then there exists an

i # I� :=[i | (x*, fi) �ci] (3.16)

such that

0=*=*i=
ci&(x, fi)

(x*, fi) &(x, fi)
.

So (x, fi) =ci which implies i # I(x). So by (3.16) we have x* � K(I(x))
which contradicts the definition of x*. Now we obtain *{0 and hence

x=x*. (3.17)

If |I*|=n, then by x # Xn , (3.15), (3.10), and the linear independence of
[ fi]i # I* we have

x # \ ,
i # I(x)

Hi+& Xn / ,
i # I*

(Hi & Xn)=[x*]
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which implies (3.17) too. So

x=PK(I(x))(O),

and hence

x=PK (O)

because K/K(I(x)). K

Lemma 7. Assume x # K, I$ # T(x), and

PK & [xPI $]
(PI$){x.

Then for any I # T(x)

&PI$&�&PI &,

and if in addition PI {PI$ then

&PI$&>&PI &. (3.18)

Proof. Firstly, we consider the case that both I$=[i $] and I=[i] are
subsets having only one element.

Suppose

(PI$ , fi)>ci .

Since I=[i] # T(x) implies i # I(x), so (x, fi)=ci . Based on the hypothesis
and Lemma 1 there exists a * # (0.1] such that

(PK & [xPI$]
(PI$), fi) =( (1&*) x+*PI$ , fi)>ci ,

which contradicts the fact that PK & [xPI$]
(PI$) # K. So

PI$ # Ki . (3.19)

Since Lemma 2 and the hypothesis of & fi &=1 imply

PI=ci fi ,

from the definition of T(x) we have ci<0. Using Lemma 3 to Ki and PI we
can find that PI is the best approximation to O from Ki . Thus by (3.19),

&PI$&�&PI &.

If in addition PI {PI$ , then from the uniqueness of the best approximation
to O from Ki we get (3.18).
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Secondly, in the general case, using Lemma 4,

K/KI$ , K/KI , x # H(I$)/HI$ , x # H(I )/HI .

So applying the above approach to K=K1 & } } } & Kr & KI$ & KI , i.e., with
fi , ci , Ki substituted by &PI�&PI&, &&PI&, KI and fi $ , ci $ , Ki $ substituted
by &PI$ �&PI$&, &&PI$&, KI$ respectively, we get the conclusion required.

K

Proof of the Theorem. It is not difficult to check that for the sequence
x0 , ..., xk generated by the Algorithm for a Successive Approximate Sequence,
(2.1) holds if 1� j<k. In fact, since xj+1 is generated either in Case j.1.2 or
in Case j.1.3, (2.1) is immediate in the first case, and in the latter case from
( j.1-2) we have xj+1 {xj , which is (2.1). So x0 , ..., xk is a successive
approximate sequence to O in K.

(i) If the algorithm ends in Case k.1.1, then xk=PIk
with Ik # Tk .

Thus by Lemma 3 we have xk=PK (O). A similar consideration leads to
xk=PK (O) if the algorithm ends in Case (k&1).1.2.

Provided the algorithm ends in Case k.2, if O � K(I(xk)) and

PK & [xk PI]
(PI)=xk , I # T(xk), (3.20)

then from [xj]k
j=1 /Xn and Lemma 6 we have xk=PK (O). In fact, when

k=1, by the fact that x1=PK & [x$0O](O), x$0 # K, and O � K there must be
an i # [1, ..., r] such that x1 # Hi but O � Ki . So O � K(I(x1)). When k>1,
obviously xk must be generated in Case (k&1).1.3 where Ik&1 # Tk&1/
T(xk&1). Noting the definition of T(x) and the fact that PIk&1

# K(Ik&1), by
Lemma 3 (used to K(Ik&1)) we have PIk&1

=PK(Ik&1)(O). But PIk&1
{O, so

O � K(Ik&1). Since xk&1 , PIk&1
# H(Ik&1) and xk=PK & [xk&1PIk&1

](PIk&1
)

implies

Ik&1 /I(xk). (3.21)

we have K(Ik&1)#K(I(xk)) and O � K(I(xk)).
Now it remains to prove (3.20). Suppose on the contrary that there

exists an

Ik # T(xk) (3.22)

for which

PK & [xk PIk
](PIk

){xk . (3.23)

If k=1, since the definition of T(xk) implies PIk
{O, by d1=0 we have

&PIk
&>dk . (3.24)
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If k>1, then similar to the approach above there exists an Ik&1 # Tk&1/
T(xk&1) such that (3.21) holds. From the definition of T(x) we obtain
Ik&1 # T(xk). Thus from (3.22), (3.23), and Lemma 7 we will get
&PIk

&>&PIk&1
&=dk , which is (3.24), if we can show PIk&1

{PIk
. In fact, if

PIk&1
=PIk

, then by the fact that

xk=PK & [xk&1PIk&1
](PIk&1

){PIk&1

there exists a *$ # [0, 1) such that

xk=(1&*$) xk&1+*$PIk&1
, (3.25)

and

(1&*) xk&1+*PIk&1
� K, \* # (*$, 1]. (3.26)

But by (3.23) it follows that

PK & [xk PIk
](PIk

)=(1&*") xk+*"PIk&1
{xk ,

where *">0. Substituting xk in the above expression by (3.25) we obtain

PK & [xk PIk
](PIk

)=(1&*")(1&*$) xk&1+[(1&*") *$+*"] P(Ik&1) # K,

which contradicts (3.26).
Now, if Ik # Tk , then (3.23) and (3.24) contradicts the condition of

Case k.2, which implies (3.20).
If Ik � Tk , then by (3.22) and the definition of Tk there exists a j # [1, ..., k&1]

for which Ik # Tj . Since in Case j.1.3 of Step j there exists a Ij # Tj such that

xj+1=PK & [xj PIj
](PIj

){xj ,

from the fact of Ik , Ij # Tj /T(xj) and Lemma 7 we have

&PIj
&�&PIk

&.

Combined with (3.24) and d1<d2< } } } <dk we obtain

&PIk
&>dk�dj+1=&PIj

&�&PIk
&.

This contradiction implies

Ik # Tk ,

which completes the proof of (i).

428 SHUSHENG XU



File: DISTL2 317415 . By:CV . Date:28:04:98 . Time:13:19 LOP8M. V8.B. Page 01:01
Codes: 2556 Signs: 871 . Length: 45 pic 0 pts, 190 mm

(ii) For x0 , x$1 , ..., x$k$ , by the definition of the successive approximate
sequence, x$1=x1 obviously. Suppose inductively

x$1=x1 , ..., x$j=xj ,

where 1� j<min[k, k$]. Since

xj+1=PK & [xj PIj
](PIj

){xj

and

x$j+1=PK & [x$j PI$j
](PI $j

){x$j ,

by Lemma 7 we have

&PI$j
&>&PIj

&

and

&PIj
&>&PI $j

&

provided PIj
{PI $j

. So PIj
=PI $j

and hence x$j+1=xj+1. Thus

x$j=xj , j=1, 2, ..., min[k, k$].

Provided k$>k, since (2.1) implies &x$j+1&<&x$j&, by (i) we have

&x$k$&<&x$k&=&xk&=&PK (O)&

which is a contradiction.
(iii) (a) Relation (2.2) holds obviously.

(b) For j=1, ..., k&2, by the algorithm

xj+1=PK & [xj PIj
](PIj

){PIj
.

So using Lemma 4 we have PKIj
(O)=PIj

� K and PK (O) # K/KIj
. Thus by

the uniqueness of the best approximation of O in KIj
we have

&PK (O)&>&PIj
&, (3.27)

i.e., (2.3) holds.

(c) If j=k&1, (2.4) holds clearly. Now let 1� j<k&1. Since there
exists an Ij # Tj for which

xj+1=PK & [xj PIj
](PIj

){PIj
,
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by Lemma 1 there exists a * # [0, 1) such that

xj+1=(1&*) xj+*PIj
. (3.28)

Based on (3.8) of Lemma 4, we conclude that

�xk , &
PIj

&PIj
&��&&PIj

&.

That is, (xk , PIj
)�(PIj

, PIj
) . Write the projection of xk on HIj

as P1 ,
the projection of P1 on the straight line [x | x=:xj+(1&:) xj+1, : # R]
as P2 . Then

&xk&2=&xk&PIj
&2+2(xk&PIj

, PIj
)+&PIj

&2

=&xk&P1 &2+&P1&PIj
&2+2((xk , PIj

) &(PIj
, PIj

) )+&PIj
&2

�&P1&P2 &2+&P2&PIj
&2+&PIj

&2

=&P1&P2 &2+&P2&2�&P2 &2. (3.29)

Suppose

P2=:0xj+(1&:0) xj+1. (3.30)

If :0�0, then from (3.30) and (3.28) we deduce

&P2&2=&PIj
&2+&PIj

&P2&2

=&PIj
&2+"PIj

&_:0

xj+1&*PIj

1&*
+(1&:0) xj+1 &"

2

=&PIj
&2+\1+

*:0

1&*+
2

&PIj
&xj+1&2

�&PIj
&2+&PIj

&xj+1&2=&xj+1 &2.

From (3.29)

&xk&�&P2 &�&xj+1&

which contradicts (2.2).
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Now we conclude that :0<0. So by (3.30)

&xj&xk&2=&xj&P2&2+&P2&xk &2

=" 1
:0

P2&
1&:0

:0

xj+1&P2"
2

+&P2&xk&2

=\1&:0

:0 +
2

&P2&xj+1&2+&P2&xk &2

>&P2&xj+1&2+&P2&xk&2=&xj+1&xk &2,

which completes the proof of (2.4).

(d) From (i) and Lemma 5 there exists an I* # I(xk) for which [ fi]i # I*

are linearly independent and (3.10) and (3.11) hold. If |I*|<n, then I* # T(xk)
and by Lemma 4 we have

K/KI* .

However, as a matter of fact the hypothesis of |I |<n is not needed for the
proof of (3.8), so the above expression still holds if |I*|=n. Thus

�xj+1 ,
&xk

&xk&��&&xk &,

and

&xj+1&xk&2=&xj+1&2+2(xj+1, &xk)+&xk&2

�&xj+1 &2&2 &xk&2+&xk&2

=&xj+1 &2&&xk&2.

Combined with (3.27) we get (2.5).

(iv) It is not difficult to show that for any nonempty subset I/I+ ,

I � T(xj), j=1, 2, ..., k. (3.31)

In fact, (3.31) holds obviously if [ fi]i # I are linearly dependent. Otherwise,
by Lemma 2 we can write

PI= :
i # I

:i fi .

Suppose

:i�0, i # I. (3.32)
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Then using Lemma 3 we have PI=PK(I )(O). But by the definition of I+

we have O # K(I ) which implies PK(I )(O)=O. So PI=O and hence (3.31)
holds. Moreover, if (3.32) is false, then (3.31) still holds.

Let

T+=[I/I+ | 0<|I |<n],

T=[I/[1, ..., r] | 0<|I |<n].

Then the numbers of the elements of T+ and T are ( r+
1

)+ } } } +( r+
n&1

) and
( r

1)+ } } } +( r
n&1), respectively. Note for each xj , 1� j<k, there exists an

Ij # Tj /T(xj).

So

Tj /T"T+ , j=1, ..., k&1.

because the intersection set of any two sets of [Tj]k&1
j=1 is empty, we obtain

k&1�_\r
1++ } } } +\ r

n&1+&&_\r+

1 ++ } } } +\ r+

n&1+& . K

At last, we point out that in practice, the value of k depends on the
nature of the given problem and the choice of the starting point x0 , and it
may be that k is far less than the upper bound given by (2.6).
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