Successive Approximate Algorithm for Best Approximation from a Polyhedron

Shusheng Xu
Department of Mathematics, Jiangnan University, Wuxi, Jiangsu, 214063, People's Republic of China

Communicated by Frank Deutsch
Received May 7, 1996; accepted in revised form May 1, 1997

Abstract

Suppose K is the intersection of a finite number of closed half-spaces $\left\{K_{i}\right\}$ in a Hilbert space X, and $x \in X \backslash K$. Dykstra's cyclic projections algorithm is a known method to determine an approximate solution of the best approximation of x from K, which is denoted by $P_{K}(x)$. Dykstra's algorithm reduces the problem to an iterative scheme which involves computing the best approximation from the individual K_{i}. It is known that the sequence $\left\{x_{j}\right\}$ generated by Dykstra's method converges to the best approximation $P_{K}(x)$. But since it is difficult to find the definite value of an upper bound of the error $\left\|x_{j}-P_{K}(x)\right\|$, the applicability of the algorithm is restrictive. This paper introduces a new method, called the successive approximate algorithm, by which one can generate a finite sequence $x_{0}, x_{1}, \ldots, x_{k}$ with $x_{k}=P_{K}(x)$. In addition, the error $\left\|x_{j}-P_{K}(x)\right\|$ is monotone decreasing and has a definite upper bound easily to be determined. So the new algorithm is very applicable in practice. © 1998 Academic Press

1. INTRODUCTION

Suppose $K=\bigcap_{i=1}^{r} C_{i}$ is the nonempty intersection of a finite number of closed convex sets C_{1}, \ldots, C_{r} in a Hilbert space X, and $x \in X \backslash K$. Dykstra's cyclic projections algorithm is a known method to determine an approximate solution of the best approximation of x from $K, P_{k}(x)$. Dykstra's algorithm essentially reduces the problem to an iterative scheme which involves computing the best approximation from the individual C_{1}, \ldots, C_{r}. According to Dykstra [1] and Boyle and Dykstra [2], the sequence $\left\{x_{j}\right\}$ generated by Dykstra's method, which is generally an infinite sequence except in some special cases, converges to $P_{K}(x)$. Then the efficacy of the method depends on the rate of convergence and one's ability of estimating the upper bound of $\left\|x_{j}-P_{K}(x)\right\|$.

In some simple cases, e.g., when all the C_{i} are subspaces, linear varieties (i.e., translates of subspaces), or half-spaces, one can determine by Dykstra's algorithm a sequence $\left\{x_{j}\right\}$ converging to $P_{K}(x)$ since it is easy to find the
best approximation from each C_{i}. In fact, when all the C_{i} are subspaces, Dykstra's algorithm reduces to the method of alternating projections due to Halperin [3]. Error analyses were made by Smith, Solmon, and Wagner [4] and Kayalar and Weinert [5]. Furthermore, it can be shown that those error bounds remain valid if the subspaces are replaced by linear varieties. When all the C_{i} are half-spaces, i.e., K is a polyhedron in the Hilbert space X, certain "residual" vectors must be computed at each step of projection (but no such "residual" vectors appeared in the subspace case). Due to Deutsch and Hundal [6], the sequence $\left\{x_{j}\right\}$ generated by Dykstra's algorithm has an error bound of exponential type as

$$
\left\|x_{j}-P_{K}(x)\right\| \leqslant \rho c^{j},
$$

where $\rho>0,0 \leqslant c<1$. Though [6] gave an upper bound less than 1 for the constant c, no estimation for ρ was given. So the applicability of Dykstra's algorithm for polyhedron approximation is restrictive unless we can find an active estimation for ρ.

Motivated by the fact that polyhedron approximation has many important applications (see, e.g., [6, Sect. 5]) this paper introduces a new method which we call the successive approximate algorithm. According to this algorithm, starting from an arbitrary point $x_{0} \in K$ one can generate a finite sequence $x_{0}, x_{1}, \ldots, x_{k}$ with $x_{k}=P_{K}(x)$. Moreover, $x_{j}(j<k)$ can be considered to be an approximate solution of $P_{K}(x)$ because the error $\left\|x_{j}-P_{K}(x)\right\|$ is monotone decreasing and has a definite upper bound easily to be determined. So the new method is very applicable in practice.

We conclude this introduction by mentioning that usually it is not difficult to find a point x_{0} in K for a given practical problem. Otherwise, one can get an $x_{0} \in K$ by known successive projection methods (see, e.g., [7]).

2. MAIN RESULTS

Let X be a Hilbert space. For $i=1, \ldots, r(r \geqslant 2$ is a given integer $)$, let $c_{i} \in \mathbb{R}$ and $f_{i} \in X$ with $\left\|f_{i}\right\|=1$. Write

$$
\begin{aligned}
H_{i} & :=\left\{x \in X \mid\left\langle x, f_{i}\right\rangle=c_{i}\right\}, \\
K_{i} & :=\left\{x \in X \mid\left\langle x, f_{i}\right\rangle \leqslant c_{i}\right\}, \\
K & :=\bigcap_{i=1}^{r} K_{i} .
\end{aligned}
$$

Assume $H_{i} \neq H_{j}$, if $i \neq j$, and K is nonempty. Since K is a closed convex set, for any given $x \in X$ there always exists a unique best approximation $P_{K}(x)$
of x from K. By a translation if necessary we may assume that x equals the origin O. We assume $O \notin K$ unless otherwise stated.

Suppose the dimension of the subspace $X_{n}:=\operatorname{span}\left\{f_{i}\right\}_{i=1}^{r}$ is n. Clearly, if $x \in K$ and the projection of x on X_{n} is x^{\prime}, then $x^{\prime} \in K$ because $\left\langle x^{\prime}, f_{i}\right\rangle=$ $\left\langle x^{\prime}-x, f_{i}\right\rangle+\left\langle x, f_{i}\right\rangle \leqslant 0+c_{i}, i \in\{1, \ldots, r\}$. For $x, y \in X$, by $[x y]$ we denote the set $\{(1-\lambda) x+\lambda y \mid \lambda \in[0,1]\}$.

For any subset $I \subset\{1, \ldots, r\}$, denote the number of the elements of I by $|I|$ and write

$$
\begin{aligned}
H(I) & :=\bigcap_{i \in I} H_{i}, \\
K(I) & :=\bigcap_{i \in I} K_{i}, \\
P_{I} & :=P_{H(I)}(O) .
\end{aligned}
$$

For $x \in X$, let

$$
I(x):=\left\{i \in\{1, \ldots, r\} \mid\left\langle x, f_{i}\right\rangle=c_{i}\right\} .
$$

Based on Lemma 2 in the next section, P_{I} can be written as a linear combination of $\left\{f_{i}\right\}_{i \in I}$ if the $\left\{f_{i}\right\}_{i \in I}$ are linearly independent. So we can define

$$
T(x)=\left\{I \subset I (x) \left|O<|I|<n,\left\{f_{i}\right\}_{i \in I}\right.\right. \text { are linearly independent, }
$$

$$
\text { and } \left.P_{I} \neq O \text { can be written as } \sum_{i \in I} \alpha_{i} f_{i} \text { with } \alpha_{i} \leqslant 0, i \in I\right\} .
$$

Defintition. Assume $k \geqslant 1, x_{0}, \ldots, x_{k} \in K$. If

$$
x_{1}=P_{K \cap\left[x_{0}^{\prime} O\right]}(O),
$$

where x_{0}^{\prime} is the projection of x_{0} on X_{n}, and for $j=1, \ldots, k-1$ there exists $I_{j} \in T\left(x_{j}\right)$ such that

$$
\begin{equation*}
x_{j+1}=P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{I_{j}}\right) \neq x_{j}, \tag{2.1}
\end{equation*}
$$

then we call x_{0}, \ldots, x_{k} a successive approximate sequence to O in K,
Obviously, if x_{0}, \ldots, x_{k} is a successive approximate sequence then x_{0}, \ldots, x_{j} is also, $1 \leqslant j<k$.

Theorem. For any point $x_{0} \in K$, there exists a successive approximate sequence $x_{0}, x_{1}, \ldots, x_{k}$ to O in K with x_{0} being its starting point, for which
(i) $x_{k}=P_{K}(O)$;
(ii) any successive approximate sequence $x_{0}, x_{1}^{\prime}, \ldots, x_{k^{\prime}}^{\prime}$ to O in K satisfies $k^{\prime} \leqslant k$ and $x_{j}^{\prime}=x_{j}, j=1, \ldots, k^{\prime}$;

$$
\text { (iii) } \begin{align*}
& \left\{\begin{array}{l}
\left\|x_{1}\right\| \leqslant\left\|x_{0}\right\|, \\
\left\|x_{j+1}\right\|<\left\|x_{j}\right\|, \quad 1 \leqslant j<k,
\end{array}\right. \tag{2.2}\\
& 0<\left\|x_{j+1}\right\|-\left\|P_{K}(O)\right\|<\left\|x_{j+1}\right\|-\left\|P_{I_{j}}\right\|, \quad 1 \leqslant j<k-1, \tag{2.3}\\
& \left\|x_{j+1}-P_{K}(O)\right\|<\left\|x_{j}-P_{K}(O)\right\|, \quad 1 \leqslant j<k, \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|x_{j+1}-P_{K}(O)\right\|<\left(\left\|x_{j+1}\right\|^{2}-\left\|P_{I_{j}}\right\|^{2}\right)^{1 / 2}, \quad 1 \leqslant j<k-1 ; \tag{2.5}
\end{equation*}
$$

(iv) $k \leqslant 1+\left[\binom{r}{1}+\cdots+\binom{r}{n-1}\right]-\left[\binom{r_{+}}{1}+\cdots+\binom{r_{+}}{n-1}\right]$,
where r_{+}denotes the number of the elements of the set

$$
I_{+}:=\left\{i \in\{1, \ldots, r\} \mid c_{i} \geqslant 0\right\},
$$

and $\binom{r_{+}}{j}$ is defined to be zero if $j>r_{+}$.
The successive approximate sequence x_{0}, \ldots, x_{k} in the Theorem can be generated by the following algorithm:

Algorithm for a Successive Approximate Sequence. Step 0. For the given point $x_{0} \in K$, compute its projection x_{0}^{\prime} on X_{n} and the best approximation of O from $K \cap\left[x_{0}^{\prime} O\right]$.

Write

$$
x_{1}=P_{K \cap\left[x_{0}^{\prime} O\right]}(O), \quad T_{1}=T\left(x_{1}\right), \quad d_{1}=0 .
$$

Let $j \leftarrow 1$ and go to Step j.
Step j. For each $I \in T_{j}$ compute P_{I}, if $\left\|P_{I}\right\|>d_{j}$ then determine $P_{K \cap\left[x_{j} P_{I}\right]}\left(P_{I}\right)$.

Case $j .1$. If there exists an $I_{j} \in T_{j}$ for which

$$
\begin{equation*}
\left\|P_{I_{j}}\right\|>d_{j} \tag{j.1-1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{K \cap\left[x_{j} P_{I_{j}}\right]}=\left(P_{I_{j}}\right) \quad \text { or } \quad \neq x_{j}, \tag{j.1-2}
\end{equation*}
$$

then
Case j.1.1. if $P_{K \cap\left[x_{j} P_{I_{j}}\right]}\left(P_{I_{j}}\right)=P_{I_{j}}=x_{j}$, let $k=j$ and end;
Case j.1.2. if $P_{K \cap\left[x_{j} P_{I_{j} j}\right.}\left(P_{I_{j}}\right)=P_{I_{j}} \neq x_{j}$, let $x_{j+1}=P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{I_{j}}\right), k=$ $j+1$ and end;

Case j.1.3. if $\left.P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{I_{j}}\right) \neq P_{I_{j}}\right)$, let $x_{j+1}=P_{k \cap\left[x_{j} P_{I_{j}}\right]}\left(P_{I_{j}}\right)$ and

$$
\begin{aligned}
T_{j+1} & =\left\{I \notin T_{1} \cup \cdots \cup T_{j} \mid I \in T\left(x_{j+1}\right)\right\}, \\
d_{j+1} & =\left\|P_{I_{j}}\right\|
\end{aligned}
$$

and $j \leftarrow j+1$. Go to Step j;
Case $j .2$. If there is no $I_{j} \in T_{j}$ satisfying ($j .1-1$) and ($j .1-2$), let $k=j$ and end.

3. PROOF OF MAIN RESULTS

Firstly, we point out that by Theorem 2.4.2 of [8] one can compute the projection of x_{0} on the finite dimensional subspace X_{n}, and by following Lemma 1 and Lemma 2 one can complete the calculation of the above Algorithm for a Successive Approximate Sequence.

Lemma 1. For any $x \in K$ and $y \in X$,

$$
\begin{equation*}
P_{K \cap[x y]}(y)=(1-\lambda) x+\lambda y, \tag{3.1}
\end{equation*}
$$

where $\lambda=1$ if

$$
\hat{I}:=\left\{i \in\{1, \ldots, r\} \mid\left\langle y, f_{i}\right\rangle>c_{i}\right\}
$$

is empty, otherwise

$$
\lambda=\min \left\{\lambda_{i} \left\lvert\, \lambda_{j}=\frac{c_{i}-\left\langle x, f_{i}\right\rangle}{\left\langle y, f_{i}\right\rangle-\left\langle x, f_{i}\right\rangle}\right., i \in \hat{I}\right\}
$$

and $\lambda \in[0,1)$.
Proof. Obviously, (3.1) holds if $\hat{I}=\varnothing$ and $\lambda=1$. If $\hat{I} \neq \varnothing$, it is easy to check

$$
\left\langle\left(1-\lambda_{i}\right) x+\lambda_{i} y, f_{i}\right\rangle=c_{i}, \quad i \in \hat{I},
$$

and (3.1) holds clearly.

Lemma 2. If $I=\left\{i_{1}, \ldots, i_{s}\right\} \subset\{1, \ldots, r\}$, and $\left\{f_{i_{j}}\right\}_{j=1}^{s}$ are linearly independent, then

$$
P_{I}=\sum_{j=1}^{s} \alpha_{i_{j}} f_{i_{j}}
$$

and

$$
\begin{equation*}
\left\|P_{I}\right\|^{2}=\sum_{j=1}^{s} \sum_{m=1}^{s} \alpha_{i_{j}} \alpha_{i_{m}}\left\langle f_{i_{j}}, f_{i_{m}}\right\rangle \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{i_{j}}=\frac{G_{i_{j}}\left(i_{1}, \ldots, i_{s},\left(c_{i_{1}}, \ldots, c_{i_{s}}\right)\right)}{G\left(i_{1}, \ldots, i_{s}\right)}, \\
& G\left(i_{1}, \ldots, i_{s}\right)=\left|\begin{array}{cccc}
\left\langle f_{i_{1}}, f_{i_{1}}\right\rangle & \left\langle f_{i_{1}}, f_{i_{2}}\right\rangle & \ldots & \left\langle f_{i_{1}}, f_{i_{s}}\right\rangle \\
\left\langle f_{i_{2}}, f_{i_{1}}\right\rangle & \left\langle f_{i_{2}}, f_{i_{2}}\right\rangle & \ldots & \left\langle f_{i_{2}}, f_{i_{s}}\right\rangle \\
\ldots & & & \\
\left\langle f_{i_{s}}, f_{i_{1}}\right\rangle & \left\langle f_{i_{s}}, f_{i_{2}}\right\rangle & \ldots & \left\langle f_{i_{s}}, f_{i_{s}}\right\rangle
\end{array}\right|, \\
& G_{i_{j}}\left(i_{1}, \ldots, i_{s},\left(c_{i_{1}}, \ldots, c_{i_{s}}\right)\right) \\
& =\left|\begin{array}{ccccccc}
\left\langle f_{i_{1}}, f_{i_{1}}\right\rangle & \ldots & \left\langle f_{i_{1}}, f_{i_{j-1}}\right\rangle & c_{i_{1}} & \left\langle f_{i_{1}}, f_{i_{j+1}}\right\rangle & \ldots & \left\langle f_{i_{1}}, f_{i_{s}}\right\rangle \\
\left\langle f_{i_{2}}, f_{i_{1}}\right\rangle & \ldots & \left\langle f_{i_{2}}, f_{i_{j-1}}\right\rangle & c_{i_{2}} & \left\langle f_{i_{2}}, f_{i_{j+1}}\right\rangle & \cdots & \left\langle f_{i_{2}}, f_{i_{s}}\right\rangle \\
\left\langle f_{i_{s}}, f_{i_{1}}\right\rangle & \cdots & \left\langle f_{i_{s}}, f_{i_{j-1}}\right\rangle & c_{i_{s}} & \left\langle f_{i_{s}}, f_{i_{j+1}}\right\rangle & \cdots & \left\langle f_{i_{s}}, f_{i_{s}}\right\rangle
\end{array}\right| .
\end{aligned}
$$

Proof. Let $P=\sum_{j=1}^{s} \alpha_{i_{j}} f_{i_{j}}$. By Cramer's rule we have

$$
\left\langle P, f_{i_{j}}\right\rangle=c_{i_{j}}, \quad j=1, \ldots, s
$$

So $P \in H(I)$.
For any $x \in H(I)$, by $\left\langle x, f_{i_{j}}\right\rangle=c_{i_{j}}, j=1, \ldots, s$, we have

$$
\langle x-P, P\rangle=\sum_{j=1}^{s} \alpha_{i_{j}}\left\langle x-P, f_{i_{j}}\right\rangle=\sum_{j=1}^{s} \alpha_{i_{j}}\left(\left\langle x, f_{i_{j}}\right\rangle-\left\langle P, f_{i_{j}}\right\rangle\right)=0,
$$

and hence

$$
\|x\|^{2}=\|x-P+P, x-P+P\|^{2}=\|x-P\|^{2}+2\langle x-P, P\rangle+\|P\|^{2} \geqslant\|P\|^{2},
$$

which implies $P=P_{I}$. Equation (3.2) holds obviously.
To prove our Theorem, we need the following lemmas. Especially, Lemma 3 does not need the hypothesis of $O \notin K$.

Lemma 3. $x^{*} \in K$ is the best approximation $P_{K}(O)$ if and only if there exists $\alpha_{i} \leqslant 0, i \in I\left(x^{*}\right)$ for which

$$
x^{*}=\sum_{i \in I\left(x^{*}\right)} \alpha_{i} f_{i}
$$

Proof. For any set $S \subset X$, we write the closure of S as \bar{S}, and

$$
\begin{aligned}
S^{\circ} & :=\{x \in X \mid\langle x, y\rangle \leqslant 0, \forall y \in S\}, \\
\operatorname{cc}(S) & :=\left\{x \mid x=\sum_{i=1}^{m} \lambda_{i} y_{i}, y_{i} \in S, \lambda_{i} \geqslant 0, m \in \mathbb{N}\right\} .
\end{aligned}
$$

Then Proposition (6.9.2) in [8] shows

$$
\begin{equation*}
s^{\circ \circ}=\overline{\operatorname{cc}(S)} \tag{3.3}
\end{equation*}
$$

It is well known that $x^{*}=P_{K}(O)$ iff

$$
-x^{*} \in\left(K-x^{*}\right)^{\circ}
$$

So it is sufficient to prove

$$
\begin{equation*}
\left(K-x^{*}\right)^{\circ}=\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\} \tag{3.4}
\end{equation*}
$$

In fact, (a) if $f=\sum_{i \in I\left(x^{*}\right)} \lambda_{i} f_{i}, \lambda_{i} \geqslant 0$, then for any $x \in K-x^{*}$ from $\left\langle x^{*}+x, f_{i}\right\rangle \leqslant c_{i}$ and $\left\langle x^{*}, f_{i}\right\rangle=c_{i}, i \in I\left(x^{*}\right)$ we have

$$
\langle f, x\rangle=\sum_{i \in I\left(x^{*}\right)} \lambda_{i}\left\langle f_{i}, x\right\rangle=0 .
$$

So $f \in\left(K-x^{*}\right)^{\circ}$ and

$$
\begin{equation*}
\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\} \subset\left(K-x^{*}\right)^{\circ} \tag{3.5}
\end{equation*}
$$

(b) On the contrary, assume $f \in\left(K-x^{*}\right)^{\circ}$. Suppose x is an arbitrary point of $\bigcap_{i \in I\left(x^{*}\right)}\left(K_{i}-x^{*}\right)$. Then for $i \in I\left(x^{*}\right)$, by $x \in K_{i}-x^{*}$ and the definition of $I\left(x^{*}\right)$ it follows that

$$
\left\langle x, f_{i}\right\rangle=\left\langle x+x^{*}, f_{i}\right\rangle-\left\langle x^{*}, f_{i}\right\rangle \leqslant c_{i}-c_{i}=0
$$

Thus

$$
\begin{equation*}
\left\langle x^{*}+\varepsilon x, f_{i}\right\rangle \leqslant c_{i}, \quad i \in I\left(x^{*}\right), \varepsilon>0 \tag{3.6}
\end{equation*}
$$

Since $\left\langle x^{*}, f_{i}\right\rangle<c_{i}$ for any $i \notin I\left(x^{*}\right)$, there exists an $\varepsilon>0$ such that

$$
\left\langle x^{*}+\varepsilon x, f_{i}\right\rangle \leqslant c_{i}, \quad i \notin I\left(x^{*}\right)
$$

Combined with (3.6) we see that

$$
\varepsilon x \in K-x^{*} .
$$

So we have

$$
\langle x, f\rangle=\frac{1}{\varepsilon}\langle\varepsilon x, f\rangle \leqslant 0 .
$$

That is,

$$
\begin{equation*}
f \in\left[\bigcap_{j \in I\left(x^{*}\right)}\left(K_{i}-x^{*}\right)\right]^{\circ} . \tag{3.7}
\end{equation*}
$$

Note that $y \in\left[\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\}\right]^{\circ}$ implies $\left\langle y, f_{i}\right\rangle \leqslant 0, i \in I\left(x^{*}\right)$ and hence $y \in \bigcap_{i \in I\left(x^{*}\right)}\left(K_{i}-x^{*}\right)$. We have

$$
\left[\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\}\right]^{\circ} \subset \bigcap_{i \in I\left(x^{*}\right)}\left(K_{i}-x^{*}\right)
$$

Noting (3.7), (3.3), and the fact that $I\left(x^{*}\right)$ is a finite set we conclude that

$$
\begin{aligned}
f \in\left[\bigcap_{i \in I\left(x^{*}\right)}\left(K_{i}-x^{*}\right)\right]^{\circ} & \subset\left[\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\}\right]^{\circ \circ} \\
& =\overline{\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\}}=\operatorname{cc}\left\{f_{i} \mid i \in I\left(x^{*}\right)\right\} .
\end{aligned}
$$

Combined with (3.5) we get (3.4).
Lemma 4. If $x \in K$ and $I \in T(x)$, then

$$
\begin{equation*}
K \subset K_{I}, \quad H(I) \subset H_{I}, \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{K_{I}}(O)=P_{I}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{I}=\left\{y \in X \left\lvert\,\left\langle y,-\frac{P_{I}}{\left\|P_{I}\right\|}\right\rangle \leqslant-\left\|P_{I}\right\|\right.\right\}, \\
& H_{I}=\left\{y \in X \left\lvert\,\left\langle y,-\frac{P_{I}}{\left\|P_{I}\right\|}\right\rangle=-\left\|P_{I}\right\|\right.\right\} .
\end{aligned}
$$

Proof. Based on the definition of $T(x)$ we have

$$
P_{I}=\sum_{i \in I} \alpha_{i} f_{i} \neq 0, \quad \alpha_{i} \leqslant 0 .
$$

So for any $y \in K$, the fact that $P_{I} \in H(I)$ gives

$$
\begin{aligned}
\left\langle y,-\frac{P_{I}}{\left\|P_{I}\right\|}\right\rangle & =\sum_{i \in I} \frac{-\alpha_{i}}{\left\|P_{I}\right\|}\left\langle y, f_{i}\right\rangle \leqslant-\frac{1}{\left\|P_{I}\right\|} \sum_{i \in I} \alpha_{i} c_{i} \\
& =-\frac{1}{\left\|P_{I}\right\|} \sum_{i \in I} \alpha_{i}\left\langle f_{i}, P_{I}\right\rangle=-\left\|P_{I}\right\|,
\end{aligned}
$$

which implies $K \subset K_{I}$. Proof of $H(I) \subset H_{I}$ is similar.
For any $y \in K_{I}$, the definition of K_{I} implies $\left\langle y,-P_{I}\right\rangle \leqslant-\left\langle P_{I}, P_{I}\right\rangle$ which is $\left\langle y-P_{I}, P_{I}\right\rangle \geqslant 0$. Thus

$$
\|y\|^{2}=\left\|y-P_{I}\right\|^{2}+2\left\langle y-P_{I}, P_{I}\right\rangle+\left\|P_{I}\right\|^{2} \geqslant\left\|P_{I}\right\|^{2} .
$$

So from $P_{I} \in H_{I}$ we have (3.9).
Lemma 5. If $x^{*}=P_{K}(O)$, then there exists an nonempty $I^{*} \subset I\left(x^{*}\right)$ such that $\left\{f_{i}\right\}_{i \in I\left(x^{*}\right)}$ are linearly independent and

$$
\begin{equation*}
x^{*}=\sum_{i \in I^{*}} \alpha_{i} f_{i} \quad \text { with } \quad \alpha_{i} \leqslant 0, \quad i \in I^{*}, \tag{3.10}
\end{equation*}
$$

moreover

$$
\begin{equation*}
x^{*}=P_{I^{*}} . \tag{3.11}
\end{equation*}
$$

Proof. Based on Lemma 3, there exists at least one nonempty subset $I \subset I\left(x^{*}\right)$ such that x^{*} can be written as a linear combination of $\left\{f_{i}\right\}_{i \in I}$ with negative coefficients. If there exist more than one such subsets, take one that has least elements and denote it as I^{\prime}. Then

$$
x^{*}=\sum_{i \in I^{\prime}} \alpha_{i} f_{i}, \quad \text { with } \quad \alpha_{i}<0, \quad i \in I^{\prime} .
$$

It is not difficult to show that the $\left\{f_{i}\right\}_{i \in I^{\prime}}$ are linearly independent. In fact, if there exists a set $\left\{a_{i}\right\}_{i \in I^{\prime}} \subset \mathbb{R}$ that at least one of the elements does not equal zero and

$$
\sum_{i \in I^{\prime}} a_{i} f_{i}=0,
$$

then

$$
\begin{equation*}
x^{*}=\sum_{i \in I^{\prime}}\left(\alpha_{i}-\alpha a_{i}\right) f_{i} \tag{3.12}
\end{equation*}
$$

for any $\alpha \in \mathbb{R}$. Let $\alpha=\alpha_{i_{0}} / a_{i_{0}}$ with $i_{0} \in I^{\prime}$ satisfy

$$
\left|\frac{\alpha_{i_{0}}}{a_{i_{0}}}\right|=\min _{i \in I^{\prime}}\left|\frac{\alpha_{i}}{a_{i}}\right| .
$$

Then

$$
\left|\alpha a_{i}\right| \leqslant\left|\frac{\alpha_{i}}{a_{i}}\right| \cdot\left|a_{i}\right|=\left|\alpha_{i}\right|, \quad i \in I^{\prime} .
$$

So on the right hand side of (3.12) the coefficient of f_{i} is zero if $i=i_{0}$ and not larger than zero if $i \neq i_{0}$, which contradicts the definition of I^{\prime}.

Now take a subset $I^{*} \subset I\left(x^{*}\right)$ such that $I^{\prime} \subset I^{*}$ and $\left\{f_{i}\right\}_{i \in I^{*}}$ is a maximal linearly independent subset of $\left\{f_{i}\right\}_{i \in I\left(x^{*}\right)}$. Then (3.10) holds.

Suppose on the contrary that $x^{*} \neq P_{I^{*}}$. Then by $x^{*} \in H\left(I^{*}\right)$ we have

$$
\begin{equation*}
\left\|P_{I^{*}}\right\|<\left\|x^{*}\right\| . \tag{3.13}
\end{equation*}
$$

It is easy to show that for $i \in I\left(x^{*}\right)$

$$
\begin{equation*}
\left\langle P_{I^{*}}, f_{i}\right\rangle=c_{i}=\left\langle x^{*}, f_{i}\right\rangle . \tag{3.14}
\end{equation*}
$$

Actually, (3.14) holds for $i \in I^{*}$ obviously. For $i \in I\left(x^{*}\right) \backslash I^{*}$, writing

$$
f_{i}=\sum_{j \in I^{*}} a_{j} f_{j}
$$

we have

$$
\begin{aligned}
\left\langle P_{I^{*}}, f_{i}\right\rangle & =\sum_{j \in I^{*}} a_{j}\left\langle P_{I^{*}}, f_{j}\right\rangle=\sum_{j \in I^{*}} a_{j} c_{j} \\
& =\sum_{j \in I^{*}} a_{j}\left\langle x^{*}, f_{j}\right\rangle=\left\langle x^{*}, f_{i}\right\rangle=c_{i} .
\end{aligned}
$$

So (3.14) holds for any $i \in I\left(x^{*}\right)$. Since

$$
\left\langle x^{*}, f_{i}\right\rangle<c_{i}, \quad i \notin I\left(x^{*}\right),
$$

there exists a $\lambda>0$ for which

$$
x_{\lambda}:=(1-\lambda) x^{*}+\lambda P_{I^{*}} \in K_{i}, \quad i=1, \ldots, r .
$$

But by (3.13)

$$
\left\|x_{\lambda}\right\|<\left\|x^{*}\right\|
$$

which contradicts the hypothesis of $x^{*}=P_{K}(O)$.
Lemma 6. If $x \in K \cap X_{n}, O \notin K(I(x))$, and

$$
P_{K \cap\left[x P_{I}\right]}\left(P_{I}\right)=x
$$

for any $I \in T(x)$, then

$$
x=P_{K}(O) .
$$

Proof. Assume the best approximation of O from $K(I(x))$ is x^{*}, then $x^{*} \neq 0$. Using Lemma 5 to the polyhedron $K(I(x))$ we can get a nonempty subset

$$
\begin{equation*}
I^{*} \subset I\left(x^{*}\right) \cap I(x) \tag{3.15}
\end{equation*}
$$

for which the $\left\{f_{i}\right\}_{i \in I^{*}}$ are linearly independent and (3.10) and (3.11) hold.
If $\left|I^{*}\right|<n$, then $I^{*} \in T(x)$ and by the hypothesis

$$
P_{K \cap\left[x P_{\left.I^{*}\right]}\right]}\left(P_{I^{*}}\right)=P_{K \cap\left[x x^{*}\right]}\left(x^{*}\right)=x .
$$

Hence from Lemma 1 we can find a $\lambda \in[0,1]$ for which

$$
(1-\lambda) x+\lambda x^{*}=x .
$$

Provided $\lambda=0$, then there exists an

$$
\begin{equation*}
i \in \hat{I}:=\left\{i \mid\left\langle x^{*}, f_{i}\right\rangle \geqslant c_{i}\right\} \tag{3.16}
\end{equation*}
$$

such that

$$
0=\lambda=\lambda_{i}=\frac{c_{i}-\left\langle x, f_{i}\right\rangle}{\left\langle x^{*}, f_{i}\right\rangle-\left\langle x, f_{i}\right\rangle} .
$$

So $\left\langle x, f_{i}\right\rangle=c_{i}$ which implies $i \in I(x)$. So by (3.16) we have $x^{*} \notin K(I(x))$ which contradicts the definition of x^{*}. Now we obtain $\lambda \neq 0$ and hence

$$
\begin{equation*}
x=x^{*} . \tag{3.17}
\end{equation*}
$$

If $\left|I^{*}\right|=n$, then by $x \in X_{n},(3.15),(3.10)$, and the linear independence of $\left\{f_{i}\right\}_{i \in I^{*}}$ we have

$$
x \in\left(\bigcap_{i \in I(x)} H_{i}\right) \cap X_{n} \subset \bigcap_{i \in I^{*}}\left(H_{i} \cap X_{n}\right)=\left\{x^{*}\right\}
$$

which implies (3.17) too. So

$$
x=P_{K(I(x))}(O),
$$

and hence

$$
x=P_{K}(O)
$$

because $K \subset K(I(x))$.
Lemma 7. Assume $x \in K, I^{\prime} \in T(x)$, and

$$
P_{K \cap\left[x P_{\left.I^{\prime}\right]}\right.}\left(P_{I^{\prime}}\right) \neq x .
$$

Then for any $I \in T(x)$

$$
\left\|P_{I^{\prime}}\right\| \geqslant\left\|P_{I}\right\|
$$

and if in addition $P_{I} \neq P_{I^{\prime}}$ then

$$
\begin{equation*}
\left\|P_{I^{\prime}}\right\|>\left\|P_{I}\right\| \tag{3.18}
\end{equation*}
$$

Proof. Firstly, we consider the case that both $I^{\prime}=\left\{i^{\prime}\right\}$ and $I=\{i\}$ are subsets having only one element.

Suppose

$$
\left\langle P_{I^{\prime}}, f_{i}\right\rangle>c_{i} .
$$

Since $I=\{i\} \in T(x)$ implies $i \in I(x)$, so $\left\langle x, f_{i}\right\rangle=c_{i}$. Based on the hypothesis and Lemma 1 there exists a $\lambda \in(0.1]$ such that

$$
\left\langle P_{K \cap\left[x P_{r}\right]}\left(P_{I^{\prime}}\right), f_{i}\right\rangle=\left\langle(1-\lambda) x+\lambda P_{I^{\prime}}, f_{i}\right\rangle>c_{i},
$$

which contradicts the fact that $P_{K \cap\left[x P_{I}\right]}\left(P_{I^{\prime}}\right) \in K$. So

$$
\begin{equation*}
P_{I^{\prime}} \in K_{i} . \tag{3.19}
\end{equation*}
$$

Since Lemma 2 and the hypothesis of $\left\|f_{i}\right\|=1$ imply

$$
P_{I}=c_{i} f_{i}
$$

from the definition of $T(x)$ we have $c_{i}<0$. Using Lemma 3 to K_{i} and P_{I} we can find that P_{I} is the best approximation to O from K_{i}. Thus by (3.19),

$$
\left\|P_{I^{\prime}}\right\| \geqslant\left\|P_{I}\right\| .
$$

If in addition $P_{I} \neq P_{I^{\prime}}$, then from the uniqueness of the best approximation to O from K_{i} we get (3.18).

Secondly, in the general case, using Lemma 4,

$$
K \subset K_{I^{\prime}}, \quad K \subset K_{I}, \quad x \in H\left(I^{\prime}\right) \subset H_{I^{\prime}}, \quad x \in H(I) \subset H_{I} .
$$

So applying the above approach to $K=K_{1} \cap \cdots \cap K_{r} \cap K_{I^{\prime}} \cap K_{I}$, i.e., with f_{i}, c_{i}, K_{i} substituted by $-P_{I} /\left\|P_{I}\right\|,-\left\|P_{I}\right\|, K_{I}$ and $f_{i^{\prime}}, c_{i^{\prime}}, K_{i^{\prime}}$ substituted by $-P_{I^{\prime}} /\left\|P_{I^{\prime}}\right\|,-\left\|P_{I^{\prime}}\right\|, K_{I^{\prime}}$ respectively, we get the conclusion required.

Proof of the Theorem. It is not difficult to check that for the sequence x_{0}, \ldots, x_{k} generated by the Algorithm for a Successive Approximate Sequence, (2.1) holds if $1 \leqslant j<k$. In fact, since x_{j+1} is generated either in Case $j .1 .2$ or in Case $j .1 .3,(2.1)$ is immediate in the first case, and in the latter case from ($j .1-2$) we have $x_{j+1} \neq x_{j}$, which is (2.1). So x_{0}, \ldots, x_{k} is a successive approximate sequence to O in K.
(i) If the algorithm ends in Case $k .1 .1$, then $x_{k}=P_{I_{k}}$ with $I_{k} \in T_{k}$. Thus by Lemma 3 we have $x_{k}=P_{K}(O)$. A similar consideration leads to $x_{k}=P_{K}(O)$ if the algorithm ends in Case $(k-1) .1 .2$.

Provided the algorithm ends in Case $k .2$, if $O \notin K\left(I\left(x_{k}\right)\right)$ and

$$
\begin{equation*}
P_{K \cap\left[x_{k} P_{I}\right]}\left(P_{I}\right)=x_{k}, \quad I \in T\left(x_{k}\right), \tag{3.20}
\end{equation*}
$$

then from $\left\{x_{j}\right\}_{j=1}^{k} \subset X_{n}$ and Lemma 6 we have $x_{k}=P_{K}(O)$. In fact, when $k=1$, by the fact that $x_{1}=P_{K \cap\left[x_{0}^{\prime} O\right]}(O), x_{0}^{\prime} \in K$, and $O \notin K$ there must be an $i \in\{1, \ldots, r\}$ such that $x_{1} \in H_{i}$ but $O \notin K_{i}$. So $O \notin K\left(I\left(x_{1}\right)\right)$. When $k>1$, obviously x_{k} must be generated in Case $(k-1) .1 .3$ where $I_{k-1} \in T_{k-1} \subset$ $T\left(x_{k-1}\right)$. Noting the definition of $T(x)$ and the fact that $P_{I_{k-1}} \in K\left(I_{k-1}\right)$, by Lemma 3 (used to $K\left(I_{k-1}\right)$) we have $P_{I_{k-1}}=P_{K\left(I_{k-1}\right)}(O)$. But $P_{I_{k-1}} \neq O$, so $O \notin K\left(I_{k-1}\right)$. Since $x_{k-1}, P_{I_{k-1}} \in H\left(I_{k-1}\right)$ and $x_{k}=P_{K \cap\left[x_{k-1} P_{I_{k-1}}\right]}\left(P_{I_{k-1}}\right)$ implies

$$
\begin{equation*}
I_{k-1} \subset I\left(x_{k}\right) . \tag{3.21}
\end{equation*}
$$

we have $K\left(I_{k-1}\right) \supset K\left(I\left(x_{k}\right)\right)$ and $O \notin K\left(I\left(x_{k}\right)\right)$.
Now it remains to prove (3.20). Suppose on the contrary that there exists an

$$
\begin{equation*}
I_{k} \in T\left(x_{k}\right) \tag{3.22}
\end{equation*}
$$

for which

$$
\begin{equation*}
P_{K \cap\left[x_{k} P_{I_{k}}\right]}\left(P_{I_{k}}\right) \neq x_{k} . \tag{3.23}
\end{equation*}
$$

If $k=1$, since the definition of $T\left(x_{k}\right)$ implies $P_{I_{k}} \neq O$, by $d_{1}=0$ we have

$$
\begin{equation*}
\left\|P_{I_{k}}\right\|>d_{k} . \tag{3.24}
\end{equation*}
$$

If $k>1$, then similar to the approach above there exists an $I_{k-1} \in T_{k-1} \subset$ $T\left(x_{k-1}\right)$ such that (3.21) holds. From the definition of $T(x)$ we obtain $I_{k-1} \in T\left(x_{k}\right)$. Thus from (3.22), (3.23), and Lemma 7 we will get $\left\|P_{I_{k}}\right\|>\left\|P_{I_{k-1}}\right\|=d_{k}$, which is (3.24), if we can show $P_{I_{k-1}} \neq P_{I_{k}}$. In fact, if $P_{I_{k-1}}=P_{I_{k}}$, then by the fact that

$$
x_{k}=P_{K \cap\left[x_{k-1} P_{I_{k-1}}\right]}\left(P_{I_{k-1}}\right) \neq P_{I_{k-1}}
$$

there exists a $\lambda^{\prime} \in[0,1)$ such that

$$
\begin{equation*}
x_{k}=\left(1-\lambda^{\prime}\right) x_{k-1}+\lambda^{\prime} P_{I_{k-1}}, \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) x_{k-1}+\lambda P_{I_{k-1}} \notin K, \quad \forall \lambda \in\left(\lambda^{\prime}, 1\right] . \tag{3.26}
\end{equation*}
$$

But by (3.23) it follows that

$$
P_{K \cap\left[x_{k} P_{I_{k}}\right]}\left(P_{I_{k}}\right)=\left(1-\lambda^{\prime \prime}\right) x_{k}+\lambda^{\prime \prime} P_{I_{k-1}} \neq x_{k},
$$

where $\lambda^{\prime \prime}>0$. Substituting x_{k} in the above expression by (3.25) we obtain

$$
P_{K \cap\left[x_{k} P_{I_{k}}\right]}\left(P_{I_{k}}\right)=\left(1-\lambda^{\prime \prime}\right)\left(1-\lambda^{\prime}\right) x_{k-1}+\left[\left(1-\lambda^{\prime \prime}\right) \lambda^{\prime}+\lambda^{\prime \prime}\right] P\left(I_{k-1}\right) \in K,
$$

which contradicts (3.26).
Now, if $I_{k} \in T_{k}$, then (3.23) and (3.24) contradicts the condition of Case $k .2$, which implies (3.20).

If $I_{k} \notin T_{k}$, then by (3.22) and the definition of T_{k} there exists a $j \in\{1, \ldots, k-1\}$ for which $I_{k} \in T_{j}$. Since in Case $j .1 .3$ of Step j there exists a $I_{j} \in T_{j}$ such that

$$
x_{j+1}=P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{I_{j}}\right) \neq x_{j},
$$

from the fact of $I_{k}, I_{j} \in T_{j} \subset T\left(x_{j}\right)$ and Lemma 7 we have

$$
\left\|P_{I_{j}}\right\| \geqslant\left\|P_{I_{k}}\right\| .
$$

Combined with (3.24) and $d_{1}<d_{2}<\cdots<d_{k}$ we obtain

$$
\left\|P_{I_{k}}\right\|>d_{k} \geqslant d_{j+1}=\left\|P_{I_{j}}\right\| \geqslant\left\|P_{I_{k}}\right\| .
$$

This contradiction implies

$$
I_{k} \in T_{k},
$$

which completes the proof of (i).
(ii) For $x_{0}, x_{1}^{\prime}, \ldots, x_{k^{\prime}}^{\prime}$, by the definition of the successive approximate sequence, $x_{1}^{\prime}=x_{1}$ obviously. Suppose inductively

$$
x_{1}^{\prime}=x_{1}, \ldots, x_{j}^{\prime}=x_{j},
$$

where $1 \leqslant j<\min \left\{k, k^{\prime}\right\}$. Since

$$
x_{j+1}=P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{\left.I_{j}\right]}\right) \neq x_{j}
$$

and

$$
x_{j+1}^{\prime}=P_{K \cap\left[x_{j}^{\prime} P_{\left.r_{j}\right]}\right]}\left(P_{\left.I_{j}^{\prime}\right]}\right) \neq x_{j}^{\prime},
$$

by Lemma 7 we have

$$
\left\|P_{I_{j}}\right\|>\left\|P_{I_{j}}\right\|
$$

and

$$
\left\|P_{I_{j}}\right\|>\left\|P_{I_{j}}\right\|
$$

provided $P_{I_{j}} \neq P_{I_{j}^{\prime}}$. So $P_{I_{j}}=P_{I_{j}^{\prime}}$ and hence $x_{j+1}^{\prime}=x_{j+1}$. Thus

$$
x_{j}^{\prime}=x_{j}, \quad j=1,2, \ldots, \min \left\{k, k^{\prime}\right\} .
$$

Provided $k^{\prime}>k$, since (2.1) implies $\left\|x_{j+1}^{\prime}\right\|<\left\|x_{j}^{\prime}\right\|$, by (i) we have

$$
\left\|x_{k^{\prime}}^{\prime}\right\|<\left\|x_{k}^{\prime}\right\|=\left\|x_{k}\right\|=\left\|P_{K}(O)\right\|
$$

which is a contradiction.
(iii) (a) Relation (2.2) holds obviously.
(b) For $j=1, \ldots, k-2$, by the algorithm

$$
x_{j+1}=P_{K \cap\left[x_{j} P_{\left.I_{j}\right]}\right.}\left(P_{I_{j}}\right) \neq P_{I_{j}} .
$$

So using Lemma 4 we have $P_{K_{I_{j}}}(O)=P_{I_{j}} \notin K$ and $P_{K}(O) \in K \subset K_{I_{j}}$. Thus by the uniqueness of the best approximation of O in $K_{I_{j}}$ we have

$$
\begin{equation*}
\left\|P_{K}(O)\right\|>\left\|P_{I_{j}}\right\|, \tag{3.27}
\end{equation*}
$$

i.e., (2.3) holds.
(c) If $j=k-1$, (2.4) holds clearly. Now let $1 \leqslant j<k-1$. Since there exists an $I_{j} \in T_{j}$ for which

$$
x_{j+1}=P_{K \cap\left[x_{j} P_{I_{j}}\right]}\left(P_{I_{j}}\right) \neq P_{I_{j}},
$$

by Lemma 1 there exists a $\lambda \in[0,1)$ such that

$$
\begin{equation*}
x_{j+1}=(1-\lambda) x_{j}+\lambda P_{I_{j}} . \tag{3.28}
\end{equation*}
$$

Based on (3.8) of Lemma 4, we conclude that

$$
\left\langle x_{k},-\frac{P_{I_{j}}}{\left\|P_{I_{j}}\right\|}\right\rangle \leqslant-\left\|P_{I_{j}}\right\| .
$$

That is, $\left\langle x_{k}, P_{I_{j}}\right\rangle \geqslant\left\langle P_{I_{j}}, P_{I_{j}}\right\rangle$. Write the projection of x_{k} on $H_{I_{j}}$ as P_{1}, the projection of P_{1} on the straight line $\left\{x \mid x=\alpha x_{j}+(1-\alpha) x_{j+1}, \alpha \in \mathbb{R}\right\}$ as P_{2}. Then

$$
\begin{align*}
\left\|x_{k}\right\|^{2} & =\left\|x_{k}-P_{I_{j}}\right\|^{2}+2\left\langle x_{k}-P_{I_{j}}, P_{I_{j}}\right\rangle+\left\|P_{I_{j}}\right\|^{2} \\
& =\left\|x_{k}-P_{1}\right\|^{2}+\left\|P_{1}-P_{I_{j}}\right\|^{2}+2\left(\left\langle x_{k}, P_{I_{j}}\right\rangle-\left\langle P_{I_{j}}, P_{I_{j}}\right\rangle\right)+\left\|P_{I_{j}}\right\|^{2} \\
& \geqslant\left\|P_{1}-P_{2}\right\|^{2}+\left\|P_{2}-P_{I_{j}}\right\|^{2}+\left\|P_{I_{j}}\right\|^{2} \\
& =\left\|P_{1}-P_{2}\right\|^{2}+\left\|P_{2}\right\|^{2} \geqslant\left\|P_{2}\right\|^{2} . \tag{3.29}
\end{align*}
$$

Suppose

$$
\begin{equation*}
P_{2}=\alpha_{0} x_{j}+\left(1-\alpha_{0}\right) x_{j+1} . \tag{3.30}
\end{equation*}
$$

If $\alpha_{0} \geqslant 0$, then from (3.30) and (3.28) we deduce

$$
\begin{aligned}
\left\|P_{2}\right\|^{2} & =\left\|P_{I_{j}}\right\|^{2}+\left\|P_{I_{j}}-P_{2}\right\|^{2} \\
& =\left\|P_{I_{j}}\right\|^{2}+\left\|P_{I_{j}}-\left[\alpha_{0} \frac{x_{j+1}-\lambda P_{I_{j}}}{1-\lambda}+\left(1-\alpha_{0}\right) x_{j+1}\right]\right\|^{2} \\
& =\left\|P_{I_{j}}\right\|^{2}+\left(1+\frac{\lambda \alpha_{0}}{1-\lambda}\right)^{2}\left\|P_{I_{j}}-x_{j+1}\right\|^{2} \\
& \geqslant\left\|P_{I_{j}}\right\|^{2}+\left\|P_{I_{j}}-x_{j+1}\right\|^{2}=\left\|x_{j+1}\right\|^{2} .
\end{aligned}
$$

From (3.29)

$$
\left\|x_{k}\right\| \geqslant\left\|P_{2}\right\| \geqslant\left\|x_{j+1}\right\|
$$

which contradicts (2.2).

Now we conclude that $\alpha_{0}<0$. So by (3.30)

$$
\begin{aligned}
\left\|x_{j}-x_{k}\right\|^{2} & =\left\|x_{j}-P_{2}\right\|^{2}+\left\|P_{2}-x_{k}\right\|^{2} \\
& =\left\|\frac{1}{\alpha_{0}} P_{2}-\frac{1-\alpha_{0}}{\alpha_{0}} x_{j+1}-P_{2}\right\|^{2}+\left\|P_{2}-x_{k}\right\|^{2} \\
& =\left(\frac{1-\alpha_{0}}{\alpha_{0}}\right)^{2}\left\|P_{2}-x_{j+1}\right\|^{2}+\left\|P_{2}-x_{k}\right\|^{2} \\
& >\left\|P_{2}-x_{j+1}\right\|^{2}+\left\|P_{2}-x_{k}\right\|^{2}=\left\|x_{j+1}-x_{k}\right\|^{2},
\end{aligned}
$$

which completes the proof of (2.4).
(d) From (i) and Lemma 5 there exists an $I^{*} \in I\left(x_{k}\right)$ for which $\left\{f_{i}\right\}_{i \in I^{*}}$ are linearly independent and (3.10) and (3.11) hold. If $\left|I^{*}\right|<n$, then $I^{*} \in T\left(x_{k}\right)$ and by Lemma 4 we have

$$
K \subset K_{I^{*}} .
$$

However, as a matter of fact the hypothesis of $|I|<n$ is not needed for the proof of (3.8), so the above expression still holds if $\left|I^{*}\right|=n$. Thus

$$
\left\langle x_{j+1}, \frac{-x_{k}}{\left\|x_{k}\right\|}\right\rangle \leqslant-\left\|x_{k}\right\|,
$$

and

$$
\begin{aligned}
\left\|x_{j+1}-x_{k}\right\|^{2} & =\left\|x_{j+1}\right\|^{2}+2\left\langle x_{j+1},-x_{k}\right\rangle+\left\|x_{k}\right\|^{2} \\
& \leqslant\left\|x_{j+1}\right\|^{2}-2\left\|x_{k}\right\|^{2}+\left\|x_{k}\right\|^{2} \\
& =\left\|x_{j+1}\right\|^{2}-\left\|x_{k}\right\|^{2} .
\end{aligned}
$$

Combined with (3.27) we get (2.5).
(iv) It is not difficult to show that for any nonempty subset $I \subset I_{+}$,

$$
\begin{equation*}
I \notin T\left(x_{j}\right), \quad j=1,2, \ldots, k . \tag{3.31}
\end{equation*}
$$

In fact, (3.31) holds obviously if $\left\{f_{i}\right\}_{i \in I}$ are linearly dependent. Otherwise, by Lemma 2 we can write

$$
P_{I}=\sum_{i \in I} \alpha_{i} f_{i} .
$$

Suppose

$$
\begin{equation*}
\alpha_{i} \leqslant 0, \quad i \in I . \tag{3.32}
\end{equation*}
$$

Then using Lemma 3 we have $P_{I}=P_{K(I)}(O)$. But by the definition of I_{+} we have $O \in K(I)$ which implies $P_{K(I)}(O)=O$. So $P_{I}=O$ and hence (3.31) holds. Moreover, if (3.32) is false, then (3.31) still holds.

Let

$$
\begin{aligned}
T_{+} & =\left\{I \subset I_{+}|0<|I|<n\},\right. \\
T & =\{I \subset\{1, \ldots, r\}|0<|I|<n\} .
\end{aligned}
$$

Then the numbers of the elements of T_{+}and T are $\binom{r_{+}}{1}+\cdots+\binom{r_{+}}{n-1}$ and $\binom{r}{1}+\cdots+\binom{r}{n-1}$, respectively. Note for each $x_{j}, 1 \leqslant j<k$, there exists an

$$
I_{j} \in T_{j} \subset T\left(x_{j}\right) .
$$

So

$$
T_{j} \subset T \backslash T_{+}, \quad j=1, \ldots, k-1 .
$$

because the intersection set of any two sets of $\left\{T_{j}\right\}_{j=1}^{k-1}$ is empty, we obtain

$$
k-1 \leqslant\left[\binom{r}{1}+\cdots+\binom{r}{n-1}\right]-\left[\binom{r_{+}}{1}+\cdots+\binom{r_{+}}{n-1}\right] .
$$

At last, we point out that in practice, the value of k depends on the nature of the given problem and the choice of the starting point x_{0}, and it may be that k is far less than the upper bound given by (2.6).

ACKNOWLEDGMENTS

I thank Professor F. Deutsch, Dr. Jun Zhong, and H. Hundal for valuable discussions on approximation from a polyhedron.

REFERENCES

1. R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc. 78 (1983), 837-842.
2. J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex sets in Hilbert spaces, in "Advances in Order Restricted Statistical Inference," pp. 28-47, Lecture Notes in Statistics, Springer-Verlag, New York/Berlin, 1985.
3. I. Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96-99.
4. K. T. Smith, D. C. Solmon, and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227-1270.
5. S. Kayalar and H. L. Weinert, Error bounds for the method of alternating projections, Math. Control Signals Systems 1 (1988), 43-59.
6. F. Deutsch and H. Hundal, The rate of convergence of Dykstra's cyclic projections algorithm: The polyhedral case, Numer. Funct. Anal. Optim. 15, Nos. 5-6 (1994), 537-565.
7. L. M. Bregman, The method of successive projection for finding a common point of convex sets, Doklady 162 (1965), 688-692.
8. P. J. Laurent, "Approximation et Optimisation," Collect. Enseignement Sci., Vol. 13, Hermann, Paris, 1972.
