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Suppose K is the intersection of a finite number of closed half-spaces {K;} in a
Hilbert space X, and xe X\K. Dykstra’s cyclic projections algorithm is a known
method to determine an approximate solution of the best approximation of x from K,
which is denoted by Pg(x). Dykstra’s algorithm reduces the problem to an iterative
scheme which involves computing the best approximation from the individual K;. It is
known that the sequence {x,} generated by Dykstra’s method converges to the best
approximation Pg(x). But since it is difficult to find the definite value of an upper
bound of the error |x;— Pk(x)|, the applicability of the algorithm is restrictive. This
paper introduces a new method, called the successive approximate algorithm, by
which one can generate a finite sequence x,, x,, ..., x; wWith x, = P,(x). In addition,
the error ||x;— Pg(x)|| is monotone decreasing and has a definite upper bound
easily to be determined. So the new algorithm is very applicable in practice. ~ © 1998

Academic Press

1. INTRODUCTION

Suppose K= ();_, C; is the nonempty intersection of a finite number of
closed convex sets C,, .., C, in a Hilbert space X, and xe X\K. Dykstra’s
cyclic projections algorithm is a known method to determine an approximate
solution of the best approximation of x from K, P,(x). Dykstra’s algorithm
essentially reduces the problem to an iterative scheme which involves comput-
ing the best approximation from the individual C,, .., C,. According to
Dykstra [ 1] and Boyle and Dykstra [2], the sequence {x;} generated by
Dykstra’s method, which is generally an infinite sequence except in some
special cases, converges to P (x). Then the efficacy of the method depends
on the rate of convergence and one’s ability of estimating the upper bound
of X, — Pr(x)]l.

In some simple cases, e.g., when all the C; are subspaces, linear varieties
(ie., translates of subspaces), or half-spaces, one can determine by Dykstra’s
algorithm a sequence {x,} converging to P (x) since it is easy to find the
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best approximation from each C;. In fact, when all the C; are subspaces,
Dykstra’s algorithm reduces to the method of alternating projections due to
Halperin [ 3]. Error analyses were made by Smith, Solmon, and Wagner [4]
and Kayalar and Weinert [5]. Furthermore, it can be shown that those
error bounds remain valid if the subspaces are replaced by linear varieties.
When all the C; are half-spaces, i.c., K is a polyhedron in the Hilbert space X,
certain “residual” vectors must be computed at each step of projection (but
no such “residual” vectors appeared in the subspace case). Due to Deutsch
and Hundal [6], the sequence {x,} generated by Dykstra’s algorithm has
an error bound of exponential type as

[x;— P (x)| < pc’,

where p >0, 0 <c < 1. Though [ 6] gave an upper bound less than 1 for the
constant ¢, no estimation for p was given. So the applicability of Dykstra’s
algorithm for polyhedron approximation is restrictive unless we can find an
active estimation for p.

Motivated by the fact that polyhedron approximation has many important
applications (see, e.g., [ 6, Sect. 5]) this paper introduces a new method which
we call the successive approximate algorithm. According to this algorithm,
starting from an arbitrary point x, € K one can generate a finite sequence
X5 X15 oo Xz With x; = Pg(x). Moreover, x; (j <k) can be considered to be
an approximate solution of P (x) because the error ||x;— P (x)| is monotone
decreasing and has a definite upper bound easily to be determined. So the new
method is very applicable in practice.

We conclude this introduction by mentioning that usually it is not
difficult to find a point x, in K for a given practical problem. Otherwise,
one can get an x, € K by known successive projection methods (see, e.g., [7]).

2. MAIN RESULTS

Let X be a Hilbert space. For i=1,..,r (r=2 is a given integer), let
¢;€R and f; e X with || f;| = 1. Write

H;:={xeX|<{x, f;)=c},
K;:={xeX|<{x, fiy <c},

Assume H; # H,, if i # j, and K is nonempty. Since K is a closed convex set,
for any given x € X there always exists a unique best approximation Py (x)
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of x from K. By a translation if necessary we may assume that x equals the
origin 0. We assume O ¢ K unless otherwise stated.

Suppose the dimension of the subspace X, :=span{f;};_, is n. Clearly,
if x € K and the projection of x on X, is x, then x' € K because {x', f;> =
(X' =x, [y +4{x, ;) <0+¢;, ie{l,..r}. For x, ye X, by [xy] we denote
the set {(1—A)x+ Ay |Ae[0,1]}.

For any subset /< {1, ..., r}, denote the number of the elements of I by
|1] and write

H(I):=() H,,
iel
K(I):=() K.,
iel
P:=Py,(0).

For xe X, let

I(x):={ie{l, ... r}|<{x, fi>=c;}.

Based on Lemma 2 in the next section, P, can be written as a linear
combination of {f;},., if the {f;},., are linearly independent. So we can
define

T(x)= {Ic I(x)| O<|I| <n, {f;}:c,are linearly independent,
and P, # O can be written as Y o, f; with o; <0, iel}.
iel
DEFINITION.  Assume k > 1, xg, ..., x, € K. If
X1 =PK(\[);"—,O](O)7

where x{ is the projection of x, on X,, and for j=1, .., k—1 there exists
I; € T(x;) such that

xj+1:PKm[folj](Plj)7éxj7 (2.1)
then we call x, ..., x, a successive approximate sequence to O in K,

. Obviously, if x,, ..., X4 is a successive approximate sequence then xo, ..., X;
is also, 1 < j<k.

THEOREM. For any point x, € K, there exists a successive approximate
Sequence Xg, Xy, .., X, to O in K with x, being its starting point, for which
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(1) x=Pg(O);

() any successive approximate sequence Xg, X\, .., Xy to O in K
satisfies k' <k and x;=x;, j=1, ., k',

oo [l < llxoll,
(111) { . (2.2)
oy lh<lix; . 1<j<k,
0<|x; i1 [ = IPx(ON < llxji | =Pl T<j<k—1, (2.3)
Ix; 41 = Pr(O) <lx;— P(O)],  1<j<k, (2.4)

and

01— PO < (P IP PR 1<j<k—T; (25)
. r r r, I
w kst ( D] (7)o ()

where r . denotes the number of the elements of the set
I, :={ie{l,.,r}|c;=0},
and (") is defined to be zero if j>r .

The successive approximate sequence X, ..., X, in the Theorem can be
generated by the following algorithm:

ALGORITHM FOR A SUCCESSIVE APPROXIMATE SEQUENCE. Step 0. For the
given point x, € K, compute its projection x; on X,, and the best approximation
of O from Kn [x,0].

Write

x1=P1<m[x()0](0)s T,=T(x,), d,=0.

Let j« 1 and go to Step J.

Step j. For each IeT; compute P,, if |P,||>d; then determine
PKr\[x/-Pl](Pl)'

Case j.1. If there exists an I; € T, for which
1Py >d, (Ji1-1)
and

Praryr=(Py)  or #x;, (j.1-2)

J
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then
Case j.1.1. if PKﬁ[unyIj_](Pg)ng:xj, let k= j and end;
Case j1.2. if PKH[X/P(]](P,/):P,/ #Xx;, let x;, =PKﬁ[xjp{j](P,j), k=
j+ 1 and end;
Case j1.3. if PKm[x,-P,j](Pl,) ;AP,]_), let Xt :P,‘,ﬁ[xjplij(P,j) and
T, ., ={I¢T, 0 - OT;|IeT(x;,,)},
dj+1 = HPIJH

and j < j+ 1. Go to Step j;

Case j.2. If there is no /; € T satisfying (j.1-1) and (j.1-2), let k= j and
end.

3. PROOF OF MAIN RESULTS

Firstly, we point out that by Theorem 2.4.2 of [ 8] one can compute the
projection of x, on the finite dimensional subspace X,, and by following
Lemma 1 and Lemma 2 one can complete the calculation of the above
Algorithm for a Successive Approximate Sequence.

Lemma 1. For any xe K and y € X,
PKm[xy](y)z(l_/l)x—i_lys (31)
where A=1if

a

I:

el o} [y, fi> > e

is empty, otherwise

A:min{ziuj: ¢;— <X, fi }

Onfy—<x o't
and £€[0,1).

Proof. Obviously, (3.1) holds if /= and A=1. If [# (¥, it is easy to
check

=) x+2y, fiy=c;, i€l

and (3.1) holds clearly. |
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Lemma 2. IfI={i, .. i} <{l,.,r},and {ﬁf}jﬁzl are linearly independent,
then k

and

1PP=Y Y woy <Sin i) (32)

Jj=1m=1

where

G,-/,(i,, s Ty (€5 ey €1))

s

ij B G(ll 5 "t ls) ’
S Lo S Sy o S fip
Gli <ﬁ2 f,1> S fop e LS fi
Iy, 9l3) >

<f,,f,|> s o S fiD
G,»/(il, s Ly (Ciy ey €1))
Sandip o i fi e <Sinfy, > 0 <L i

A SRR Y A SRR S ST W M
Sih> o ko> o ki > o S fd

Proof. Let P=3%7_, % f,-/. By Cramer’s rule we have

<Pa fif>:Cifa j:l,..., S.

So Pe H(I).
For any xe H(I), by {x, f,-/_> =ci],j= 1, .., s, we have

s 5

<X—P,P>: Z aij<x_P>.fi/>: Z O(1j(<x>f‘zl>_<P’f;]>):

j=1 j=1
and hence
|Ix|?=llx—P+P,x—P+P||>=|x—P|*+2{x—P, P> +||P|*>||P|I%,

which implies P = P,. Equation (3.2) holds obviously. ||

To prove our Theorem, we need the following lemmas. Especially,
Lemma 3 does not need the hypothesis of O ¢ K.
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LeMMA 3. x*e K is the best approximation Py (O) if and only if there
exists o; <0, i€ I(x*) for which

x*= Y af.

iel(x*)
Proof. For any set S < X, we write the closure of S as S, and
So:={xeX|<{x, y)<0,YyeS},

cc(S):={x|x= Y Ay, yieS,/l,ZO,meN}.

i=1

Then Proposition (6.9.2) in [8] shows

s°° =cc(S). (3.3)
It is well known that x* = P, (O) iff
—x*e(K—x*)°.
So it is sufficient to prove
(K—x*)°=cc{f;|iel(x*)}. (3.4)

In fact, (a) if f=>crw+ i fi» 4,20, then for any xe K—x* from
{x*+x, f;><c;,and {x*, f;> =c;, ie [(x*) we have

fixdy= Y Afix)=0.

ieI(x*)
So fe(K—x*)° and
cef{ filieI(x*)} = (K—x*)°. (3.5)

(b) On the contrary, assume f e (K—x*)°. Suppose x is an arbitrary
point of ;s (K;—x*). Then for iel(x*), by xeK,—x* and the
definition of I(x*) it follows that

$x, [y =Lx+x% fi) ={x* fi) <¢;—¢;=0.

Thus

{x*+ex, [y <c, iel(x*),e>0. (3.6)
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Since {x*, f;> <c, for any i¢ I(x*), there exists an ¢ >0 such that

{x*+ex, fiy <c,, i¢ I(x*).
Combined with (3.6) we see that

exe K—x*.
So we have
1
<X, f =g<6x,f> <O0.
That is,
fe{ ﬂ (K[—x*)} . (3.7)
Jjel(x*)

Note that ye[cc{ f;|iel(x*)}]° implies {y, f;> <0, ie(x*) and hence
V€ Nicr (K;—x*). We have

[ec{filiel(x*)}1°= () (K,—x*).

iel(x*)

Noting (3.7), (3.3), and the fact that I(x*) is a finite set we conclude that

fe{ N (Ki—x*)} < [ec{f;liel(x*)}]°°
iel(x*)

=cc{fi|iel(x*)} =cc{ f;|iel(x*)}.
Combined with (3.5) we get (3.4). |

LemMA 4. If xe K and I€ T(x), then
KCKI: H(I)CHD (38)
and

Py (0)=P, (3.9)

Ki={rex| (s -gpp) < -1pal:
H’:{yEX‘<y’_|§:|>:_P"}‘

where
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Proof. Based on the definition of 7(x) we have

P,=> a,f; #0, o, <0.

iel

So for any y € K, the fact that P, e H(I) gives

Y e

iel

P, > — 1
Vs — = <y’f1>< -
< [Pl ,-; [P, 1P,

1
=~ L 4k Lo Py = =17l
iel

which implies K < K,. Proof of H(I) < H, is similar.
For any yeK,, the definition of K, implies {y, —P,> < —{(P,, P;>
which is { y— P,, P;> > 0. Thus

IyIP=ly—=P1?+2{y—P;, P> +||P,|I>> | P;]*
So from P, e H, we have (3.9). |

LEMMmA 5. If x* = Pg(0), then there exists an nonempty I* < I(x*) such
that { f;}ic rxx are linearly independent and

x*= Y a,f; with o;<0, iel*, (3.10)

iel*

moreover

x*=P,.. (3.11)

Proof. Based on Lemma 3, there exists at least one nonempty subset
I<I(x*) such that x* can be written as a linear combination of {f;},.,
with negative coefficients. If there exist more than one such subsets, take
one that has least elements and denote it as /'. Then

x*=Y o, fi with «;<0, iel.
iel

It is not difficult to show that the { f;} ., are linearly independent. In
fact, if there exists a set {a,},., = R that at least one of the elements does
not equal zero and

Z aif;’zoz

iel
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then

x*=Y (t;—aa,) f; (3.12)

iel
for any o€ R. Let a=a, /a, with i, € I" satisfy

o

i e
—|=min |—|.
a; iel' |d;
0
Then
&, .
loa,| < — la;| = o, iel.
i

So on the right hand side of (3.12) the coefficient of f; is zero if i =i, and
not larger than zero if i # i,, which contradicts the definition of 7.

Now take a subset /* < I(x*) such that I’ = I* and {f;},., is a maximal
linearly independent subset of { f;},. ;.. Then (3.10) holds.

Suppose on the contrary that x* # P,.. Then by x* € H(I*) we have

[P | < [lx*]l. (3.13)
It is easy to show that for ie I(x*)
CPres [y =¢;=Xx%, f). (3.14)

Actually, (3.14) holds for i e I* obviously. For ie I(x*)\I*, writing

fi= 2 af;

jer*

we have

(Prs fi> =2 alPp, ;> =2 ax;

jer* jer*
= Z aj<X*> f_/>=<X*7 ﬁ>=ci'
jer*

So (3.14) holds for any ie I(x*). Since
<X*3ﬁ><cis Z¢I(X*)s
there exists a A >0 for which

x,=(1—A)x*+ AP, €K, i=1,..,r.
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But by (3.13)
e, I <l
which contradicts the hypothesis of x* =P, (0O). |
LemmA 6. If xeKnX,, O¢ K(I(x)), and
Pratar(P)=x
for any I€ T(x), then
x=Pg(0).

Proof. Assume the best approximation of O from K(I(x)) is x*, then
x*#0. Using Lemma 5 to the polyhedron K(/(x)) we can get a nonempty
subset

I* < I(x*) N I(x) (3.15)

for which the {f;},.,» are linearly independent and (3.10) and (3.11) hold.
If |[I*| <n, then I* € T(x) and by the hypothesis

Prrtera(Pre) =Py (x¥) =x.
Hence from Lemma 1 we can find a Ae[0, 1] for which
(1=A)x+Ix*=x.
Provided 4 =0, then there exists an
iel:={i|{x* f>=c;} (3.16)
such that

t_<xa f;>
0=l=j=—ot .
X D —Lx )

So {x, f;> =c¢,; which implies ie I(x). So by (3.16) we have x* ¢ K(I(x))
which contradicts the definition of x*. Now we obtain A1 # 0 and hence

x=x* (3.17)

If |I*| =n, then by xe X,,, (3.15), (3.10), and the linear independence of
{fi}icr» we have

e< N H[>mX,,cﬂ (H, 0 X,) = {x*)

iel(x) iel*
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which implies (3.17) too. So
X =Py O).
and hence
x=Pg(0)
because K< K(I1(x)). |
LemMA 7. Assume xe K, I' e T(x), and
Pypep,1(Pr) #X.
Then for any Ie T(x)
1Pl = 1P,
and if in addition P, # P, then

1Pl > 1P (3.18)

Proof. Firstly, we consider the case that both I'={i'} and I={i} are
subsets having only one element.
Suppose

{Pr, fio>ci

Since 7= {i} € T(x) implies i € I(x), so {x, f;> =c,. Based on the hypothesis
and Lemma 1 there exists a 4 €(0.1] such that

{Prapp)(Pr)s [ =X(1=A) x+ APy, f,) >¢;,
which contradicts the fact that Py .p (P,)€K. So
P, ek, (3.19)
Since Lemma 2 and the hypothesis of || f;|| =1 imply
Pr=c; fi

from the definition of 7(x) we have ¢;<0. Using Lemma 3 to K; and P; we
can find that P, is the best approximation to O from K,. Thus by (3.19),

1Pl = 11P Il

If in addition P, # P,, then from the uniqueness of the best approximation
to O from K; we get (3.18).
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Secondly, in the general case, using Lemma 4,
KcK,, KcK,, xeH(I')cH,, xe H(I)=H,.

So applying the above approach to K=K, n --- n K, n K, n K, i.e., with
f:, ¢;, K; substituted by —P,/||P,ll, —|IP;|, K; and f;., c¢;., K, substituted
by —P,/IIP, |, — P, |, K, respectively, we get the conclusion required.

Proof of the Theorem. 1t is not difficult to check that for the sequence
X, -, X, generated by the Algorithm for a Successive Approximate Sequence,
(2.1) holds if 1 < j<k. In fact, since x;, , is generated either in Case j.1.2 or
in Case j.1.3, (2.1) is immediate in the first case, and in the latter case from
(j.1-2) we have x;,, #x;, which is (2.1). So x,,..,x; is a successive
approximate sequence to O in K.

(1) If the algorithm ends in Case k.1.1, then x, =P, with I, € T}.
Thus by Lemma 3 we have x, = P,(0O). A similar consideration leads to

X, = Pg(0) if the algorithm ends in Case (k—1).1.2.
Provided the algorithm ends in Case k.2, if O¢ K(I(x,)) and

P, [ka,](PI) =Xr» TeT(x,), (3.20)

then from {x;}*_, = X, and Lemma 6 we have x, = Px(0). In fact, when
k=1, by the fact that X, = Pk [y,0(0), Xy €K, and O ¢ K there must be
an ie {1, .., r} such that x, e H, but O¢ K,. So O ¢ K(I(x,)). When k> 1,
obviously x, must be generated in Case (k—1).1.3 where I, _,e€T,_;<
T(x, _1). Noting the definition of 7(x) and the fact that P, € K(I,_,), by
Lemma 3 (used to K(/,_;)) we have P, =Py, (O0).But P, #0,so
O¢K(I,_,). Since x,_,, P, €H(I,_,) and xk:PKﬁ[xk—lplk,l](P[k—l)
implies

e

I, | = I(x;). (3.21)

we have K(I, _,) > K(I(x;)) and O¢ K(I(x})).
Now it remains to prove (3.20). Suppose on the contrary that there
exists an

I € T(xy) (3.22)
for which
Prepxr,1(Pr) # X (3.23)
If k=1, since the definition of 7'(x,) implies P, # O, by d, =0 we have

|, || > dy. (3.24)
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If k> 1, then similar to the approach above there exists an I, e T, _, <

T(x, _,) such that (3.21) holds. From the definition of 7(x) we obtain
I, _, €T(x;). Thus from (3.22), (3.23), and Lemma 7 we will get

[P, || > 1P, |l =d,, which is (3.24), if we can show P, # P, . In fact, if
P, =P, then by the fact that

X =Prn [X/fflpl,\,,l](PI/cfl) # Plk—l
there exists a A’ € [0, 1) such that
Xe=(1=A)xe  + AP, (3.25)
and

(1= X, +AP, ¢K,  Yie(V, 1] (3.26)

Iy
But by (3.23) it follows that

Pk~ [XA,PIk](PIA,) =(1-=2")x,+ /ALNPIA,?1 7 X,
where A" > 0. Substituting x, in the above expression by (3.25) we obtain

Prapyr(Pr) =0 =21 =) x, i+ [(1=2") A+ 2" ] P(L 1) €K,

which contradicts (3.26).

Now, if I, € T,, then (3.23) and (3.24) contradicts the condition of
Case k.2, which implies (3.20).

If I, ¢ T}, then by (3.22) and the definition of T there existsaje {1, .., k — 1}
for which I, € T}. Since in Case j.1.3 of Step j there exists a I, € T; such that

X1 =Prapgr(Pr) # X5,
from the fact of Iy, I; e T, = T(x;) and Lemma 7 we have
AT AN
Combined with (3.24) and d, <d, < --- <d, we obtain
1Pyl > di=d;, =P, 1= 1Pyl
This contradiction implies

Ik € Tka

which completes the proof of (i).
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(i) For xy, X}, .., X}», by the definition of the successive approximate
sequence, x| = x, obviously. Suppose inductively

’ !
X1=X1,..., X;

=X

]2
where 1 < j<min{k, k'}. Since
J

Xi+1= PKr\[ijI/](Pl) #X;

and

Xji1=Prarge, (Pr) #xj,
by Lemma 7 we have
1Pyl > 1Py
and
1P, > 1Py
provided P,/, ;éP,/z. So P,/,=P,; and hence xj, ,=x;, . Thus
Jj=12, .., min{k, k'}.
Provided k' >k, since (2.1) implies |x], | <|x;[l, by (i) we have
x| < llx [l = x| = [P (O)l

which is a contradiction.
(ii1)) (a) Relation (2.2) holds obviously.

(b) Forj=1,.., k—2, by the algorithm

Xit1 :PKm[ijl/_](PIj)?éPIj-

So using Lemma 4 we have Py (0) = P,/ ¢ K and Px(0O)eK c K,/. Thus by
the uniqueness of the best appfoximatidn of O in K , we have

1Pk (O > (1P, (3.27)

ie., (2.3) holds.

(c) Ifj=k—1, (2.4) holds clearly. Now let 1 < j<k — 1. Since there
exists an [; € T, for which

Xi+1 :Pkm[ijl/](Pl/.) #P,/_,
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by Lemma 1 there exists a 1€ [0, 1) such that
xj+1=(1—/1)xj+/1P,/. (3.28)

Based on (3.8) of Lemma 4, we conclude that

P,
Spo —Tp ) < — 1Pl
< P b

That is, {xy, P,]_> > <P,/, P,/_>. Write the projection of x, on H,j_ as P,

the projection of P, on the straight line {x|x=ox;+(1—a)x;,,,aeR}
as P,. Then

161 = 15— Py |12 +2Cx — Py P>+ 1Py 12
= =Py |2+ 1Py = Py [P+ 2 Py — <Py Py) + 1Py 2
> Py~ Py |+ P2 — Py |+ Py 12

=Py =P, |2+ | P> = | P, ]*. (3.29)
Suppose
Py=oox; +(1—ap) x;, . (3.30)
If oy =0, then from (3.30) and (3.28) we deduce

1P, 11 =Py II>+ 1Py~ P

xjH—AP,/ 2

=|P,,|2+P,,.—{ao =

+(1_“0)xj+1}

A

1-4

2
=|P1/|2+<1+ > HPI/-_X_/'+1”2

> 1Py 17+ 1Py =31 12 =141 112
From (3.29)

x> 1P|l = Hx_j+1 [

which contradicts (2.2).
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Now we conclude that a, <0. So by (3.30)

ij_ka2= ij_Psz+ [Py —x; |7

1 1 —a, 2
=|—P,— X1 — P, + [Py —x, |17
o %)
1 —ay)\?
:< > sz_ijrlHZ“‘HPz_kaz
o)

>|[Py— X4 12+ 1Py — x 1> = ”x]'+l_xk“29

which completes the proof of (2.4).

(d) From (i) and Lemma 5 there exists an /* € I(x,) for which {1}«
are linearly independent and (3.10) and (3.11) hold. If |[I*| <n, then I* € T(x,)
and by Lemma 4 we have

Kc K.

However, as a matter of fact the hypothesis of |/| <n is not needed for the
proof of (3.8), so the above expression still holds if |7*| =#n. Thus

< _x">< ™
Xivtr T ) S — Xk
Y :

and
11 = X 17 = Do,y 124206415 =200 + X )12
<Xt 12 =2 0130 1%+ flee |12
= [0 12 = lIxe 1
Combined with (3.27) we get (2.5).
(iv) It is not difficult to show that for any nonempty subset /<1,
I¢T(x), j=12,..,k (3.31)

In fact, (3.31) holds obviously if { f;} ;. are linearly dependent. Otherwise,
by Lemma 2 we can write

P,= Z o fr

Suppose

,<0, iel (3.32)
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Then using Lemma 3 we have P;= P (0). But by the definition of I,
we have O e K(I) which implies P (0)= 0. So P,;= O and hence (3.31)
holds. Moreover, if (3.32) is false, then (3.31) still holds.

Let

T,={IcI, |0<|I|<n},
T={Ic{l,..r}|0<|I|<n}.

Then the numbers of the elements of 7', and T are (") + --- +(,"+,) and
(1)+ - +(,",), respectively. Note for each x;, 1 < j<k, there exists an

n—1
LeT, cT(x)).
So
T,—CT\TJr, j=1, .. k—1

because the intersection set of any two sets of { 7} %~ is empty, we obtain

v (o) ()

At last, we point out that in practice, the value of k depends on the
nature of the given problem and the choice of the starting point x,, and it
may be that k is far less than the upper bound given by (2.6).
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